Suzanne L. Mansour
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suzanne L. Mansour.
Development | 2003
Tracy J. Wright; Suzanne L. Mansour
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.
Development | 2007
Chaoying Li; Daryl A. Scott; Ekaterina P. Hatch; Xiaoyan Tian; Suzanne L. Mansour
Mitogen-activated protein kinase (MAPK) pathways are major mediators of extracellular signals that are transduced to the nucleus. MAPK signaling is attenuated at several levels, and one class of dual-specificity phosphatases, the MAPK phosphatases (MKPs), inhibit MAPK signaling by dephosphorylating activated MAPKs. Several of the MKPs are themselves induced by the signaling pathways they regulate, forming negative feedback loops that attenuate the signals. We show here that in mouse embryos, Fibroblast growth factor receptors (FGFRs) are required for transcription of Dusp6, which encodes MKP3, an extracellular signal-regulated kinase (ERK)-specific MKP. Targeted inactivation of Dusp6 increases levels of phosphorylated ERK, as well as the pERK target, Erm, and transcripts initiated from the Dusp6 promoter itself. Finally, the Dusp6 mutant allele causes variably penetrant, dominant postnatal lethality, skeletal dwarfism, coronal craniosynostosis and hearing loss; phenotypes that are also characteristic of mutations that activate FGFRs inappropriately. Taken together, these results show that DUSP6 serves in vivo as a negative feedback regulator of FGFR signaling and suggest that mutations in DUSP6 or related genes are candidates for causing or modifying unexplained cases of FGFR-like syndromes.
Developmental Dynamics | 2009
Lisa L. Abler; Suzanne L. Mansour; Xin Sun
Fibroblast growth factor 10 (FGF10) signaling through FGF receptor 2 (FGFR2) is required for lung initiation. While studies indicate that Fgf10 and Fgfr2 are also important at later stages of lung development, their roles in early branching events remain unclear. We addressed this question through conditional inactivation of both genes in mouse subsequent to lung initiation. Inactivation of Fgf10 in lung mesenchyme resulted in smaller lobes with a reduced number of branches. Inactivation of Fgfr2 in lung epithelium resulted in disruption of lobes and small epithelial outgrowths that arose arbitrarily along the main bronchi. In both mutants, there was an increase in cell death. Also, the expression patterns of key signaling molecules implicated in branching morphogenesis were altered and a proximal lung marker was expanded distally. Our results indicate that both Fgf10 and Fgfr2 are required for a normal branching program and for proper proximal–distal patterning of the lung.Developmental Dynamics 238:1999–2013, 2009.
Development | 2007
Ekaterina P. Hatch; C. Albert Noyes; Xiaofen Wang; Tracy J. Wright; Suzanne L. Mansour
The inner ear, which contains sensory organs specialized for hearing and balance, develops from an ectodermal placode that invaginates lateral to hindbrain rhombomeres (r) 5-6 to form the otic vesicle. Under the influence of signals from intra- and extraotic sources, the vesicle is molecularly patterned and undergoes morphogenesis and cell-type differentiation to acquire its distinct functional compartments. We show in mouse that Fgf3, which is expressed in the hindbrain from otic induction through endolymphatic duct outgrowth, and in the prospective neurosensory domain of the otic epithelium as morphogenesis initiates, is required for both auditory and vestibular function. We provide new morphologic data on otic dysmorphogenesis in Fgf3 mutants, which show a range of malformations similar to those of Mafb (Kreisler), Hoxa1 and Gbx2 mutants, the most common phenotype being failure of endolymphatic duct and common crus formation, accompanied by epithelial dilatation and reduced cochlear coiling. The malformations have close parallels with those seen in hearing-impaired patients. The morphologic data, together with an analysis of changes in the molecular patterning of Fgf3 mutant otic vesicles, and comparisons with other mutations affecting otic morphogenesis, allow placement of Fgf3 between hindbrain-expressed Hoxa1 and Mafb, and otic vesicle-expressed Gbx2, in the genetic cascade initiated by WNT signaling that leads to dorsal otic patterning and endolymphatic duct formation. Finally, we show that Fgf3 prevents ventral expansion of r5-6 neurectodermal Wnt3a, serving to focus inductive WNT signals on the dorsal otic vesicle and highlighting a new example of cross-talk between the two signaling systems.
Current Topics in Developmental Biology | 2003
Tracy J. Wright; Suzanne L. Mansour
Abstract The 22 mammalian fibroblast growth factors (FGFs) acting through seven main receptor tyrosine kinase isoforms play roles in controlling the growth, differentiation, motility, and survival of cells during development. A variety of experimental approaches have begun to reveal the ways in which FGF signaling is used to control the development of the outer, middle, and inner ears. Structurally related groups of FGFs have similar receptor binding specificity in vitro and in cultured cells. For some aspects of ear development, both the relevant FGF ligand and receptor is known. In other cases, only one member of the pair has been determined, but plausible candidates can be proposed based on expression data. Despite the large number of distinct roles for FGF signaling that have been uncovered in the developing auditory system to date, it is clear that we have only begun to scratch the surface of this topic. Future studies aimed at uncovering redundant functions of FGFs and unraveling the later functions of FGFs that are required for early stages of development will help in defining the full complement of roles for FGF signaling in otic development.
Developmental Dynamics | 2003
Tracy J. Wright; Ekaterina P. Hatch; Hakan Karabagli; Pinar Karabagli; Gary C. Schoenwolf; Suzanne L. Mansour
The inner ear, which mediates hearing and equilibrium, develops from an ectodermal placode located adjacent to the developing hindbrain. Induction of the placode and its subsequent morphogenesis and differentiation into the inner ear epithelium and its sensory neurons, involves signalling interactions within and between otic and non‐otic tissues. Several members of the fibroblast growth factor (FGF) family play important roles at various stages of otic development; however, there are additional family members that have not been evaluated. In this study, we surveyed the expression patterns of 18 mouse Fgf and 3 Fgf receptor (Fgfr) genes during early otic development. Two members of the Fgf family, Fgf4 and Fgf16, and all three tested members of the Fgfr family, Fgfr2c, Fgfr3c, and Fgfr4, were expressed in tissues relevant to inner ear development. Fgf4 transcripts were expressed in the preplacodal and placodal ectoderm, suggesting potential roles in placode induction and/or maintenance. Fgf16 was expressed in the posterior otic cup and vesicle, suggesting roles in otic cell fate decisions and/or axis formation. Development Dynamics 228:267–272, 2003.
The EMBO Journal | 1988
Suzanne L. Mansour; G. R. Martin
Mouse embryos at 7.5 days of gestation and endodermal cells derived from embryonal carcinoma cells each express four int‐2 mRNAs of similar size and relative abundance. To determine their structure and coding potential, we prepared a cDNA library from endoderm mRNA and isolated several int‐2 cDNAs. Structural analysis of these cDNAs combined with Northern blot hybridization and primer extension analyses of int‐2 mRNA revealed that the differences between the mRNAs are generated through the use of two alternate transcriptional start sites and two alternate polyadenylation sites. All four mRNAs share a common core sequence that encodes a protein with amino acid similarity to fibroblast growth factor.
Genome Biology | 2017
Rolen M. Quadros; Hiromi Miura; Donald W. Harms; Hisako Akatsuka; Takehito Sato; Tomomi Aida; Ronald Redder; Guy P. Richardson; Yutaka Inagaki; Daisuke Sakai; Shannon M. Buckley; Parthasarathy Seshacharyulu; Surinder K. Batra; Mark A. Behlke; Sarah A. Zeiner; Ashley M. Jacobi; Yayoi Izu; Wallace B. Thoreson; Lisa D. Urness; Suzanne L. Mansour; Masato Ohtsuka; Channabasavaiah B. Gurumurthy
BackgroundConditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient.ResultsHere we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5–100% of the resulting live offspring.ConclusionsEasi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
Gene Analysis Techniques | 1990
Suzanne L. Mansour
The ability to create targeted mutations in the mouse will have an impact on many areas of research in mammalian biology. Mutations are generated in embryonic stem (ES) cells by homologous recombination between exogenously added DNA and the endogenous chromosomal sequences. These cells are then used to generate chimeric intermediates that pass the mutant allele through the germ line, initiating a strain of mice that carry the desired mutation. This review focuses on the selection of a starting ES cell line, introduction of DNA into ES cells, construction of gene targeting vectors, and selection/enrichment schemes for the isolation of targeted cell lines. The generation of mice that carry the targeted allele is briefly outlined.
Anatomy and Embryology | 2004
Yoshihiko Satoh; Ryuma Haraguchi; Tracy J. Wright; Suzanne L. Mansour; Juha Partanen; Mohammad K. Hajihosseini; Veraragavan P. Eswarakumar; Peter Lonai; Gen Yamada
Members of the fibroblast growth factor (FGF) family play diverse roles during the development and patterning of various organs. In human and mice, 22 FGFs and four receptors derived from several splice variants are present. Redundant expression and function of FGF genes in organogenesis have been reported, but their roles in embryonic external genitalia, genital tubercle (GT), development have not been studied in detail. To address the role of FGF during external genitalia development, we have analyzed the expression of FGF genes (Fgf8, 9, 10) and receptor genes (Fgfr1, r2IIIb, r2IIIc) in GT of mice. Furthermore, Fgf10 and Fgfr2IIIb mutant mice were analyzed to elucidate their roles in embryonic external genitalia development. Fgfr2IIIb was expressed in urethral plate epithelium during GT development. Fgfr2IIIb mutant mice display urethral dysmorphogenesis. Marker gene analysis for urethral plate and bilateral mesenchymal formation suggests the existence of epithelial-mesenchymal interaction during urethral morphogenesis. Therefore, FGF10/FGFR2IIIb signals seem to constitute a developmental cascade for such morphogenesis.