Sven Casteleyn
James I University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sven Casteleyn.
ISPRS international journal of geo-information | 2016
Auriol Degbelo; Carlos Granell; Sergio Trilles; Devanjan Bhattacharya; Sven Casteleyn; Christian Kray
The holy grail of smart cities is an integrated, sustainable approach to improve the efficiency of the city’s operations and the quality of life of citizens. At the heart of this vision is the citizen, who is the primary beneficiary of smart city initiatives, either directly or indirectly. Despite the recent surge of research and smart cities initiatives in practice, there are still a number of challenges to overcome in realizing this vision. This position paper points out six citizen-related challenges: the engagement of citizens, the improvement of citizens’ data literacy, the pairing of quantitative and qualitative data, the need for open standards, the development of personal services, and the development of persuasive interfaces. The article furthermore advocates the use of methods and techniques from GIScience to tackle these challenges, and presents the concept of an Open City Toolkit as a way of transferring insights and solutions from GIScience to smart cities.
International Journal of Geographical Information Science | 2015
Joaquín Torres-Sospedra; Joan P. Avariento; David Rambla; Raúl Montoliu; Sven Casteleyn; Mauri Benedito-Bordonau; Michael Gould; Joaquín Huerta
A Smart City relies on six key factors: Smart Governance, Smart People, Smart Economy, Smart Environment, Smart Living and Smart Mobility. This paper focuses on Smart Mobility by improving one of its key components: positioning. We developed and deployed a novel indoor positioning system (IPS) that is combined with an outdoor positioning system to support seamless indoor and outdoor navigation and wayfinding. The positioning system is implemented as a service in our broader cartography-based smart university platform, called SmartUJI, which centralizes access to a diverse collection of campus information and provides basic and complex services for the Universitat Jaume I (Spain), which serves as surrogate of a small city. Using our IPS and based on the SmartUJI services, we developed, deployed and evaluated two end-user mobile applications: the SmartUJI APP that allows users to obtain map-based information about the different facilities of the campus, and the SmartUJI AR that allows users to interact with the campus through an augmented reality interface. Students, university staff and visitors who tested the applications reported their usefulness in locating university facilities and generally improving spatial orientation.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2017
Lorenzo Busetto; Sven Casteleyn; Carlos Granell; Monica Pepe; Massimo Barbieri; Manuel Campos-Taberner; Raffaele Casa; Francesco Collivignarelli; Roberto Confalonieri; Alberto Crema; Francisco Javier García-Haro; Luca Gatti; Ioannis Z. Gitas; Alberto González-Pérez; Gonçal Grau-Muedra; Tommaso Guarneri; Francesco Holecz; Dimitrios Katsantonis; Chara Minakou; Ignacio Miralles; Ermes Movedi; Francesco Nutini; Valentina Pagani; Angelo Palombo; Francesco Di Paola; Simone Pascucci; Stefano Pignatti; Anna Rampini; Luigi Ranghetti; Elisabetta Ricciardelli
The ERMES agromonitoring system for rice cultivations integrates EO data at different resolutions, crop models, and user-provided in situ data in a unified system, which drives two operational downstream services for rice monitoring. The first is aimed at providing information concerning the behavior of the current season at regional/rice district scale, while the second is dedicated to provide farmers with field-scale data useful to support more efficient and environmentally friendly crop practices. In this contribution, we describe the main characteristics of the system, in terms of overall architecture, technological solutions adopted, characteristics of the developed products, and functionalities provided to end users. Peculiarities of the system reside in its ability to cope with the needs of different stakeholders within a common platform, and in a tight integration between EO data processing and information retrieval, crop modeling, in situ data collection, and information dissemination. The ERMES system has been operationally tested in three European rice-producing countries (Italy, Spain, and Greece) during growing seasons 2015 and 2016, providing a great amount of near-real-time information concerning rice crops. Highlights of significant results are provided, with particular focus on real-world applications of ERMES products and services. Although developed with focus on European rice cultivations, solutions implemented in the ERMES system can be, and are already being, adapted to other crops and/or areas of the world, thus making it a valuable testing bed for the development of advanced, integrated agricultural monitoring systems.
Transactions in Gis | 2017
Albert Acedo; Marco Painho; Sven Casteleyn
The academic interest in social concepts in city contexts, such as sense of place and social capital, has been growing in the last decades. We present a systematic literature review that confirms the strong relationship between sense of place and social capital, from a social sciences point-of-view. It also reveal that little attention has been paid to their spatial dimensions at the urban level, thereby missing the chance to exploit socio-spatial knowledge to improve the day-to-day life in and functioning of the city (e.g. in planning processes, citizen participation, civic engagement). We therefore examine sense of place and social capital from a Geographic Information Science (GISc) viewpoint, and present a formal conceptualization and initial theoretical framework which explicitly describes both concepts, and the relation between them, within the context of a city and from a spatial point of view.
Computers in Human Behavior | 2018
Mijail Naranjo Zolotov; Tiago Oliveira; Sven Casteleyn
Zolotov, M. N., Oliveira, T., & Casteleyn, S. (2018). E-participation adoption models research in the last 17 years: A weight and meta-analytical review. Computers in Human Behavior, 81, 350-365. DOI: 10.1016/j.chb.2017.12.031
ISPRS international journal of geo-information | 2017
Carlos Granell; Ignacio Miralles; Luis E. Rodríguez-Pupo; Alberto González-Pérez; Sven Casteleyn; Lorenzo Busetto; Monica Pepe; Mirco Boschetti; Joaquín Huerta
Agricultural monitoring has greatly benefited from the increased availability of a wide variety of remote-sensed satellite imagery, ground-sensed data (e.g., weather station networks) and crop models, delivering a wealth of actionable information to stakeholders to better streamline and improve agricultural practices. Nevertheless, as the degree of sophistication of agriculture monitoring systems increases, significant challenges arise due to the handling and integration of multi-scale data sources to present information to decision-makers in a way which is useful, understandable and user friendly. To address these issues, in this article we present the conceptual architecture and service-oriented implementation of a regional geoportal, specifically focused on rice crop monitoring in order to perform unified monitoring with a supporting system at regional scale. It is capable of storing, processing, managing, serving and visualizing monitoring and generated data products with different granularity and originating from different data sources. Specifically, we focus on data sources and data flow, and their importance for and in relation to different stakeholders. In the context of an EU-funded research project, we present an implementation of the regional geoportal for rice monitoring, which is currently in use in Europe’s three largest rice-producing countries, Italy, Greece and Spain.
web intelligence | 2017
Frederik Gailly; Nadejda Alkhaldi; Sven Casteleyn; Wouter Verbeke
Within an enterprise, various stakeholders create different conceptual models, such as process, data, and requirements models. These models are fundamentally based on similar underlying enterprise (domain) concepts, but they differ in focus, use different modeling languages, take different viewpoints, utilize different terminology, and are used to develop different enterprise artifacts; as such, they typically lack consistency and interoperability. This issue can be solved by enterprise-specific ontologies, which serve as a reference during the conceptual model creation. Using such a shared semantic repository makes conceptual models interoperable and facilitates model integration. The challenge to accomplish this is twofold: on the one hand, an up-to-date enterprise-specific ontology needs to be created and maintained, and on the other hand, different modelers also need to be supported in their use of the enterprise-specific ontology. The authors propose to tackle these challenges by means of a recommendation-based conceptual modeling and an ontology evolution framework, and we focus in particular on ontology-based modeling support. To this end, the authors present a framework for Business Process Modeling Notation (BPMN) as a conceptual modeling language, and focus on how modelers can be assisted during the modeling process and how this impacts the semantic quality of the resulting models. Subsequently, a first, large-scale explorative experiment is presented involving 140 business students to evaluate the BPMN instantiation of our framework. The experiments show promising results with regard to incurred overheads, intention of use and model interoperability.
Frontiers in Environmental Science | 2015
Carlos Granell; Sven Casteleyn; Clement Atzberger
• precision agriculture (Moran et al., 1997; Gebbers and Adamchuk, 2010; Lee et al., 2010), • alerting and forecasting systems (Doraiswamy et al., 2003; Rembold et al., 2013), • sustainable resource protection (Baret et al., 2007), • ecological farming and sustainable intensification (Garnett et al., 2013), • traceability of products (Opara, 2003), • policy steering (Palm et al., 2014), • indexand claim-based insurances (de Leeuw et al., 2014).
Sensors | 2018
Ngo Manh Khoi; Sven Casteleyn; M. Mehdi Moradi; Edzer Pebesma
Participatory sensing combines the powerful sensing capabilities of current mobile devices with the mobility and intelligence of human beings, and as such has to potential to collect various types of information at a high spatial and temporal resolution. Success, however, entirely relies on the willingness and motivation of the users to carry out sensing tasks, and thus it is essential to incentivize the users’ active participation. In this article, we first present an open, generic participatory sensing framework (Citizense) which aims to make participatory sensing more accessible, flexible and transparent. Within the context of this framework we adopt three monetary incentive mechanisms which prioritize the fairness for the users while maintaining their simplicity and portability: fixed micro-payment, variable micro-payment and lottery. This incentive-enabled framework is then deployed on a large scale, real-world case study, where 230 participants were exposed to 44 different sensing campaigns. By randomly distributing incentive mechanisms among participants and a subset of campaigns, we study the behaviors of the overall population as well as the behaviors of different subgroups divided by demographic information with respect to the various incentive mechanisms. As a result of our study, we can conclude that (1) in general, monetary incentives work to improve participation rate; (2) for the overall population, a general descending order in terms of effectiveness of the incentive mechanisms can be established: fixed micro-payment first, then lottery-style payout and finally variable micro-payment. These two conclusions hold for all the demographic subgroups, even though different different internal distances between the incentive mechanisms are observed for different subgroups. Finally, a negative correlation between age and participation rate was found: older participants contribute less compared to their younger peers.
ISPRS international journal of geo-information | 2018
Ngo Manh Khoi; Sven Casteleyn
The large number of mobile devices and their increasingly powerful computing and sensing capabilities have enabled the participatory sensing concept. Participatory sensing applications are now able to effectively collect a variety of information types with high accuracy. Success, nevertheless, depends largely on the active participation of the users. In this article, we seek to understand spatial and temporal user behaviors in participatory sensing. To do so, we conduct a large-scale deployment of Citizense, a multi-purpose participatory sensing framework, in which 359 participants of demographically different backgrounds were simultaneously exposed to 44 participatory sensing campaigns of various types and contents. This deployment has successfully gathered various types of urban information and at the same time portrayed the participants’ different spatial, temporal and behavioral patterns. From this deployment, we can conclude that (i) the Citizense framework can effectively help participants to design data collecting processes and collect the required data, (ii) data collectors primarily contribute in their free time during the working week; much fewer submissions are done during the weekend, (iii) the decision to respond and complete a particular participatory sensing campaign seems to be correlated to the campaign’s geographical context and/or the recency of the data collectors’ activities, and (iv) data collectors can be divided into two groups according to their behaviors: a smaller group of active data collectors who frequently perform participatory sensing activities and a larger group of regular data collectors who exhibit more intermittent behaviors. These identified user behaviors open avenues to improve the design and operation of future participatory sensing applications.