Sven Dähne
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sven Dähne.
NeuroImage | 2014
Stefan Haufe; Frank C. Meinecke; Kai Görgen; Sven Dähne; John-Dylan Haynes; Benjamin Blankertz; Felix Bießmann
The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Matthias Schultze-Kraft; Daniel Birman; Marco Rusconi; Carsten Allefeld; Kai Görgen; Sven Dähne; Benjamin Blankertz; John-Dylan Haynes
Significance Many studies have shown that movements are preceded by early brain signals. There has been a debate as to whether subjects can still cancel a movement after onset of these early signals. We tested whether subjects can win a “duel” against a brain–computer interface designed to predict their movements in real time from observations of their EEG activity. Our findings suggest that subjects can exert a “veto” even after onset of this preparatory process. However, the veto has to occur before a point of no return is reached after which participants cannot avoid moving. In humans, spontaneous movements are often preceded by early brain signals. One such signal is the readiness potential (RP) that gradually arises within the last second preceding a movement. An important question is whether people are able to cancel movements after the elicitation of such RPs, and if so until which point in time. Here, subjects played a game where they tried to press a button to earn points in a challenge with a brain–computer interface (BCI) that had been trained to detect their RPs in real time and to emit stop signals. Our data suggest that subjects can still veto a movement even after the onset of the RP. Cancellation of movements was possible if stop signals occurred earlier than 200 ms before movement onset, thus constituting a point of no return.
NeuroImage | 2014
Sven Dähne; Frank C. Meinecke; Stefan Haufe; Johannes Höhne; Michael Tangermann; Klaus-Robert Müller; Vadim V. Nikulin
Previously, modulations in power of neuronal oscillations have been functionally linked to sensory, motor and cognitive operations. Such links are commonly established by relating the power modulations to specific target variables such as reaction times or task ratings. Consequently, the resulting spatio-spectral representation is subjected to neurophysiological interpretation. As an alternative, independent component analysis (ICA) or alternative decomposition methods can be applied and the power of the components may be related to the target variable. In this paper we show that these standard approaches are suboptimal as the first does not take into account the superposition of many sources due to volume conduction, while the second is unable to exploit available information about the target variable. To improve upon these approaches we introduce a novel (supervised) source separation framework called Source Power Comodulation (SPoC). SPoC makes use of the target variable in the decomposition process in order to give preference to components whose power comodulates with the target variable. We present two algorithms that implement the SPoC approach. Using simulations with a realistic head model, we show that the SPoC algorithms are able extract neuronal components exhibiting high correlation of power with the target variable. In this task, the SPoC algorithms outperform other commonly used techniques that are based on the sensor data or ICA approaches. Furthermore, using real electroencephalography (EEG) recordings during an auditory steady state paradigm, we demonstrate the utility of the SPoC algorithms by extracting neuronal components exhibiting high correlation of power with the intensity of the auditory input. Taking into account the results of the simulations and real EEG recordings, we conclude that SPoC represents an adequate approach for the optimal extraction of neuronal components showing coupling of power with continuously changing behaviorally relevant parameters.
Artificial Intelligence in Medicine | 2013
Martijn Schreuder; Angela Riccio; Monica Risetti; Sven Dähne; Andrew Ramsay; John Williamson; Donatella Mattia; Michael Tangermann
OBJECTIVE The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. METHODS Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. RESULTS The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the users clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies on both categories, the visual paradigm could be used with lower cognitive workload. Besides attention and working memory, several other neurophysiological and -psychological indicators - and the role they play in the BCIs at hand - are discussed. CONCLUSION The users performance on the first BCI paradigm would typically have excluded her from further ERP-based BCI studies. However, this study clearly shows that, with the numerous paradigms now at our disposal, the pursuit for a functioning BCI system should not be stopped after an initial failed attempt.
Proceedings of the IEEE | 2015
Siamac Fazli; Sven Dähne; Wojciech Samek; Felix Bieszmann; Klaus-Robert Müller
Brain-computer interfaces (BCIs) are successfully used in scientific, therapeutic and other applications. Remaining challenges are among others a low signal-to-noise ratio of neural signals, lack of robustness for decoders in the presence of inter-trial and inter-subject variability, time constraints on the calibration phase and the use of BCIs outside a controlled lab environment. Recent advances in BCI research addressed these issues by novel combinations of complementary analysis as well as recording techniques, so called hybrid BCIs. In this paper, we review a number of data fusion techniques for BCI along with hybrid methods for BCI that have recently emerged. Our focus will be on sensorimotor rhythm-based BCIs. We will give an overview of the three main lines of research in this area, integration of complementary features of neural activation, integration of multiple previous sessions and of multiple subjects, and show how these techniques can be used to enhance modern BCI systems.
Frontiers in Neuroscience | 2010
Bastian Venthur; Simon Scholler; John Williamson; Sven Dähne; Matthias Sebastian Treder; Maria T. Kramarek; Klaus-Robert Müller; Benjamin Blankertz
This paper introduces Pyff, the Pythonic feedback framework for feedback applications and stimulus presentation. Pyff provides a platform-independent framework that allows users to develop and run neuroscientific experiments in the programming language Python. Existing solutions have mostly been implemented in C++, which makes for a rather tedious programming task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and stimulus applications) easily programmable. It includes base classes for various types of common feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be used as a standalone application, for instance providing stimulus presentation in psychophysics experiments, or within a closed loop such as in biofeedback or brain–computer interfacing experiments. Pyff communicates with other systems via a standardized communication protocol and is therefore suitable to be used with any system that may be adapted to send its data in the specified format. Having such a general, open-source framework will help foster a fruitful exchange of experimental paradigms between research groups. In particular, it will decrease the need of reprogramming standard paradigms, ease the reproducibility of published results, and naturally entail some standardization of stimulus presentation.
Proceedings of the IEEE | 2015
Sven Dähne; Felix Bieszmann; Wojciech Samek; Stefan Haufe; Dominique Goltz; Christopher Gundlach; Arno Villringer; Siamac Fazli; Klaus-Robert Müller
Multimodal data are ubiquitous in engineering, communications, robotics, computer vision, or more generally speaking in industry and the sciences. All disciplines have developed their respective sets of analytic tools to fuse the information that is available in all measured modalities. In this paper, we provide a review of classical as well as recent machine learning methods (specifically factor models) for fusing information from functional neuroimaging techniques such as: LFP, EEG, MEG, fNIRS, and fMRI. Early and late fusion scenarios are distinguished, and appropriate factor models for the respective scenarios are presented along with example applications from selected multimodal neuroimaging studies. Further emphasis is given to the interpretability of the resulting model parameters, in particular by highlighting how factor models relate to physical models needed for source localization. The methods we discuss allow for the extraction of information from neural data, which ultimately contributes to 1) better neuroscientific understanding; 2) enhance diagnostic performance; and 3) discover neural signals of interest that correlate maximally with a given cognitive paradigm. While we clearly study the multimodal functional neuroimaging challenge, the discussed machine learning techniques have a wide applicability, i.e., in general data fusion, and may thus be informative to the general interested reader.
Frontiers in Neuroscience | 2016
Benjamin Blankertz; Laura Acqualagna; Sven Dähne; Stefan Haufe; Matthias Schultze-Kraft; Irene Sturm; Marija Ušćumlić; Markus A. Wenzel; Gabriel Curio; Klaus-Robert Müller
The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.
NeuroImage | 2014
Sven Dähne; Vadim V. Nikulin; David Ramírez; Klaus-Robert Müller; Stefan Haufe
Phase synchronization among neuronal oscillations within the same frequency band has been hypothesized to be a major mechanism for communication between different brain areas. On the other hand, cross-frequency communications are more flexible allowing interactions between oscillations with different frequencies. Among such cross-frequency interactions amplitude-to-amplitude interactions are of a special interest as they show how the strength of spatial synchronization in different neuronal populations relates to each other during a given task. While, previously, amplitude-to-amplitude correlations were studied primarily on the sensor level, we present a source separation approach using spatial filters which maximize the correlation between the envelopes of brain oscillations recorded with electro-/magnetoencephalography (EEG/MEG) or intracranial multichannel recordings. Our approach, which is called canonical source power correlation analysis (cSPoC), is thereby capable of extracting genuine brain oscillations solely based on their assumed coupling behavior even when the signal-to-noise ratio of the signals is low. In addition to using cSPoC for the analysis of cross-frequency interactions in the same subject, we show that it can also be utilized for studying amplitude dynamics of neuronal oscillations across subjects. We assess the performance of cSPoC in simulations as well as in three distinctively different analysis scenarios of real EEG data, each involving several subjects. In the simulations, cSPoC outperforms unsupervised state-of-the-art approaches. In the analysis of real EEG recordings, we demonstrate excellent unsupervised discovery of meaningful power-to-power couplings, within as well as across subjects and frequency bands.
NeuroImage | 2014
Stefan Haufe; Sven Dähne; Vadim V. Nikulin
Neuronal oscillations have been shown to be associated with perceptual, motor and cognitive brain operations. While complex spatio-temporal dynamics are a hallmark of neuronal oscillations, they also represent a formidable challenge for the proper extraction and quantification of oscillatory activity with non-invasive recording techniques such as EEG and MEG. In order to facilitate the study of neuronal oscillations we present a general-purpose pre-processing approach, which can be applied for a wide range of analyses including but not restricted to inverse modeling and multivariate single-trial classification. The idea is to use dimensionality reduction with spatio-spectral decomposition (SSD) instead of the commonly and almost exclusively used principal component analysis (PCA). The key advantage of SSD lies in selecting components explaining oscillations-related variance instead of just any variance as in the case of PCA. For the validation of SSD pre-processing we performed extensive simulations with different inverse modeling algorithms and signal-to-noise ratios. In all these simulations SSD invariably outperformed PCA often by a large margin. Moreover, using a database of multichannel EEG recordings from 80 subjects we show that pre-processing with SSD significantly increases the performance of single-trial classification of imagined movements, compared to the classification with PCA pre-processing or without any dimensionality reduction. Our simulations and analysis of real EEG experiments show that, while not being supervised, the SSD algorithm is capable of extracting components primarily relating to the signal of interest often using as little as 20% of the data variance, instead of > 90% variance as in case of PCA. Given its ease of use, absence of supervision, and capability to efficiently reduce the dimensionality of multivariate EEG/MEG data, we advocate the application of SSD pre-processing for the analysis of spontaneous and induced neuronal oscillations in normal subjects and patients.