Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Müller-Loennies is active.

Publication


Featured researches published by Sven Müller-Loennies.


Current Topics in Microbiology and Immunology | 1996

Bacterial Endotoxin: Chemical Constitution, Biological Recognition, Host Response, and Immunological Detoxification

Ernst Theodor Rietschel; Helmut Brade; O. Holst; Lore Brade; Sven Müller-Loennies; U. Mamat; U. Zähringer; F. Beckmann; U. Seydel; K. Brandenburg; A. J. Ulmer; T. Mattern; Holger Heine; J. Schletter; H. Loppnow; U. Schönbeck; H.-D. Flad; S. Hauschildt; U. F. Schade; F. Di Padova; S. Kusumoto; R. R. Schumann

The discovery of endotoxin dates from the late nineteenth century when Richard Pfeiffer, then working in Berlin, characterized endotoxins as heat-stable and cell-associated molecules (Westphal et al. 1977), thus distinguishing them from the heat-labile and proteinous exotoxins which are actively secreted by bacteria (Bhakdi et al. 1994). They were first found to be produced by Vibrio cholerae bacteria and later by Salmonella and Serratia. Endotoxins, due to their various potent biological activities soon attracted worldwide scientific interest. Initial chemical analyses of purified endotoxin indicated that it consists essentially of polysaccharide and lipid, and it was therefore termed lipopolysaccharide (LPS). Today the terms endotoxin (Wolff 1904) and lipopolysaccharide (Shear and Turner 1943) are used synonymously for the same molecule.


European Journal of Cell Biology | 2010

Mannose phosphorylation in health and disease

Katrin Kollmann; Sandra Pohl; Katrin Marschner; Marisa Encarnação; Imme Sakwa; Stephan Tiede; Ben J. Poorthuis; Torben Lübke; Sven Müller-Loennies; Stephan Storch; Thomas Braulke

Lysosomal hydrolases catalyze the degradation of a variety of macromolecules including proteins, carbohydrates, nucleic acids and lipids. The biogenesis of lysosomes or lysosome-related organelles requires a continuous substitution of soluble acid hydrolases and lysosomal membrane proteins. The targeting of lysosomal hydrolases depends on mannose 6-phosphate residues (M6P) that are recognized by specific receptors mediating their transport to an endosomal/prelysosomal compartment. The key role in the formation of M6P residues plays the GlcNAc-1-phosphotransferase localized in the Golgi apparatus. Two genes have been identified recently encoding the type III alpha/beta-subunit precursor membrane protein and the soluble gamma-subunit of GlcNAc-1-phosphotransferase. Mutations in these genes result in two severe diseases, mucolipidosis type II (MLII) and III (MLIII), biochemically characterized by the missorting of multiple lysosomal hydrolases due to impaired formation of the M6P recognition marker, and general lysosomal dysfunction. This review gives an update on structural properties, localization and functions of the GlcNAc-1-phosphotransferase subunits and improvements of pre- and postnatal diagnosis of ML patients. Further, the generation of recombinant single-chain antibody fragments against M6P residues and of new mouse models of MLII and MLIII will have considerable impact to provide deeper insight into the cell biology of lysosomal dysfunctions and the pathomechanisms underlying these lysosomal disorders.


Journal of Biological Chemistry | 2003

Structural Analysis of Oligosaccharides from Lipopolysaccharide (LPS) of Escherichia coli K12 Strain W3100 Reveals a Link between Inner and Outer Core LPS Biosynthesis

Sven Müller-Loennies; Buko Lindner; Helmut Brade

Lipopolysaccharide (LPS) from Escherichia coli K12 W3100 is known to contain several glycoforms, and the basic structure has been investigated previously by methylation analyses (Holst, O. (1999) in Endotoxin in Health and Disease (Brade, H., Opal, S. M., Vogel, S. N., and Morrison, D., eds) pp. 115–154; Marcel Dekker, Inc., New York). In order to reveal dependences of gene activity and LPS structure, we have now determined the composition of de-O-acylated LPS by electrospray ionization-Fourier transform ion cyclotron-mass spectrometry (ESI-FT-MS) and identified 11 different LPS molecules. We have isolated the major glycoforms after de-O- and de-N-acylation and obtained four oligosaccharides that differed in their carbohydrate structure and phosphate substitution. The main oligosaccharide accounted for ∼70% of the total and had a molecular mass of 2516 Da according to ESI-FT-MS. The dodecasaccharide structure (glycoform I) as determined by NMR was consistent with MS and compositional analysis. One minor oligosaccharide (5%) of the same carbohydrate structure did not contain the 4′-phosphate of the lipid A. Two oligosaccharides contained the same phosphate substitution but differed in their carbohydrate structure, one (5%) which contained an additional β-d-GlcN in 1→7 linkage on a terminal heptose residue (glycoform II) which was N-acetylated in LPS. A minor amount of a molecule lacking the terminal l-α-d-Hep in the outer core but otherwise identical to the major oligosaccharide (glycoform III) could only be identified by ESI-FT-MS of the de-O-acylated LPS. The other oligosaccharide (20%) contained an α-Kdo-(2→4)-[α-l-Rha-(1→5)]-α-Kdo-(2→4)-α-Kdo branched tetrasaccharide connected to the lipid A (glycoform IV). This novel inner core structure was accompanied by a truncation of the outer core in which the terminal disaccharide l-α-d-Hep-(1→6)-α-d-Glc was missing. The latter structure was identified for the first time in LPS and revealed that changes in the inner core structure may be accompanied by structural changes in the outer core.


Journal of Biological Chemistry | 2000

3-Deoxy-D-manno-oct-2-ulosonic Acid (Kdo) Transferase (WaaA) and Kdo Kinase (KdkA) of Haemophilus influenzae Are Both Required to Complement a waaA Knockout Mutation of Escherichia coli*

Werner Brabetz; Sven Müller-Loennies; Helmut Brade

The lipopolysaccharide (LPS) of the deep rough mutant Haemophilus influenzae I69 consists of lipid A and a single 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue substituted with one phosphate at position 4 or 5 (Helander, I. M., Lindner, B., Brade, H., Altmann, K., Lindberg, A. A., Rietschel, E. T., and Zähringer, U. (1988) Eur. J. Biochem. 177, 483–492). ThewaaA gene encoding the essential LPS-specific Kdo transferase was cloned from this strain, and its nucleotide sequence was identical to H. influenzae DSM11121. The gene was expressed in the Gram-positive host Corynebacterium glutamicum and characterized in vitro to encode a monofunctional Kdo transferase. waaA of H. influenzae could not complement a knockout mutation in the corresponding gene of an Re-type Escherichia coli strain. However, complementation was possible by coexpressing the recombinantwaaA together with the LPS-specific Kdo kinase gene (kdkA) of H. influenzae DSM11121 or I69, respectively. The sequences of both kdkA genes were determined and differed in 25 nucleotides, giving rise to six amino acid exchanges between the deduced proteins. Both E. colistrains which expressed waaA and kdkA fromH. influenzae synthesized an LPS containing a single Kdo residue that was exclusively phosphorylated at position 4. The structure was determined by nuclear magnetic resonance spectroscopy of deacylated LPS. Therefore, the reaction products of both cloned Kdo kinases represent only one of the two chemical structures synthesized by H. influenzae I69.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Antibody WN1 222-5 mimics Toll-like receptor 4 binding in the recognition of LPS

Kathryn Gomery; Sven Müller-Loennies; Cory L. Brooks; Lore Brade; Paul Kosma; Franco Di Padova; Helmut Brade; Stephen V. Evans

Escherichia coli infections, a leading cause of septic shock, remain a major threat to human health because of the fatal action to endotoxin (LPS). Therapeutic attempts to neutralize endotoxin currently focus on inhibiting the interaction of the toxic component lipid A with myeloid differentiating factor 2, which forms a trimeric complex together with Toll-like receptor 4 to induce immune cell activation. The 1.73-Å resolution structure of the unique endotoxin-neutralizing protective antibody WN1 222-5 in complex with the core region shows that it recognizes LPS of all E. coli serovars in a manner similar to Toll-like receptor 4, revealing that protection can be achieved by targeting the inner core of LPS and that recognition of lipid A is not required. Such interference with Toll-like receptor complex formation opens new paths for antibody sepsis therapy independent of lipid A antagonists.


Journal of Molecular Biology | 2008

Exploration of Specificity in Germline Monoclonal Antibody Recognition of a Range of Natural and Synthetic Epitopes

Cory L. Brooks; Sven Müller-Loennies; Lore Brade; Paul Kosma; Tomoko Hirama; C. Roger MacKenzie; Helmut Brade; Stephen V. Evans

To explore the molecular basis of antigen recognition by germline antibodies, we have determined to high resolution the structures of the near-germline monoclonal antibody S25-2 in complex with seven distinct carbohydrate antigens based on the bacterial sugar 3-deoxy-alpha-D-manno-oct-2-ulosonic acid (Kdo). In contrast to previous findings, the inherited germline Kdo monosaccharide binding site is not restricted to this bacterial sugar but is able to accommodate an array of substitutions and chemical modifications of Kdo, including naturally occurring antigens containing the related monosaccharide d-glycero-alpha-d-talo-oct-2-ulosonic acid as well as nonterminal Kdo residues. However, we show by surface plasmon resonance and ELISA how antibody S25-2 specificity is so dependent on the context in which the antigen is presented that a free disaccharide displays strong binding while the same lipid-A-bound disaccharide does not bind. These structures provide insight into how inherited germline genes code for immunoglobulins of limited flexibility that are capable of binding a range of epitopes from which affinity-matured antibodies are generated.


Glycobiology | 2010

Analysis of Cross-Reactive and Specific Anti-Carbohydrate Antibodies against Lipopolysaccharide from Chlamydophila psittaci

Sandra Gerstenbruch; Cory L. Brooks; Paul Kosma; Lore Brade; C. Roger MacKenzie; Stephen V. Evans; Helmut Brade; Sven Müller-Loennies

Chlamydiae contain a rough-type lipopolysaccharide (LPS) of 3-deoxy-alpha-d-manno-oct-2-ulopyranosonic acid residues (Kdo). Two Kdo trisaccharides, 2.8/2.4- and 2.4/2.4-linked, and a branched 2.4[2.8]2.4-linked Kdo tetrasaccharide occur in Chlamydiaceae. While the 2.8/2.4-linked trisaccharide contains a family-specific epitope, the branched Kdo oligosaccharide occurs only in Chlamydophila psittaci and antibodies against it will be useful in human and veterinarian diagnostics. To overcome the generation of cross-reactive antibodies that bind with high affinity to a dominant epitope formed by 2.4/2.4-linked Kdo, we immunized mice with a synthetic 2.4[2.8]-linked branched Kdo trisaccharide and used phage display of scFv to isolate recombinant antibody fragments (NH2240-31 and SAG506-01) that recognize the branched Kdo oligosaccharide with a K(D) of less than 10 nM. Importantly, although these antibodies used germline genes coding for an inherited Kdo recognition site, they were able clearly to distinguish between 2.4[2.8]2.4- and 2.4/2.4-linked Kdo. Sequence determination, binding data, and X-ray structural analysis revealed the basis for the improved discrimination between similar Kdo ligands and indicated that the alteration of a stacking interaction from a phenylalanine residue in the center of the combining site to a tyrosine residue facing away from the center favors recognition of branched 2.4[2.8]2.4-linked Kdo residues. Immunofluorescence tests of infected cell monolayers using this antibody show specific staining of C. psittaci elementary bodies that allow it to be distinguished from other pathogenic chlamydiae.


American Journal of Pathology | 2010

A Novel Single-Chain Antibody Fragment for Detection of Mannose 6-Phosphate-Containing Proteins: Application in Mucolipidosis Type II Patients and Mice

Sven Müller-Loennies; Giovanna Galliciotti; Katrin Kollmann; Markus Glatzel; Thomas Braulke

Newly synthesized soluble lysosomal hydrolases require mannose 6-phosphate (Man6P) residues on their oligosaccharides for their transport to lysosomes. The formation of Man6P residues is catalyzed by the GlcNAc-1-phosphotransferase, which is defective in the lysosomal storage disorders mucolipidosis type II (ML II) and ML III. Both hypersecretion and reduced intracellular level of lysosomal enzymes as well as direct sequencing of GlcNAc-1-phosphotransferase genes are important diagnostic markers for ML II and ML III. A high-affinity Man6P-specific single-chain antibody fragment was generated, allowing the rapid indirect demonstration of defective GlcNAc-1-phosphotransferase. In media and extracts of cultured fibroblasts of healthy controls but not of ML II and ML III patients, several Man6P-containing proteins could be detected by anti-Man6P Western blotting. Immunoprecipitation of Man6P-containing proteins from conditioned media or mouse brain extracts followed by arylsulfatase A and cathepsin D Western blotting confirmed the specificity of the antibody fragment for lysosomal proteins. Application of the antibody fragment in immunohistochemistry of human brain slices from nonaffected patients showed strong neuronal immunoreactivity, which was not observed in cortical sections of an ML II patient. Finally, in brain extracts of a novel GlcNAc-1-phosphotransferase knock-in mouse no Man6P-containing proteins were detectable. Thus, the single-chain antibody fragment against Man6P was demonstrated to allow the specific, rapid, and convenient detection of Man6P-containing proteins and facilitates the diagnosis of ML II and ML III.


Biochemistry | 2010

Antibodies Raised Against Chlamydial Lipopolysaccharide Antigens Reveal Convergence in Germline Gene Usage and Differential Epitope Recognition

Cory L. Brooks; Sven Müller-Loennies; S.N Borisova; Lore Brade; Paul Kosma; Tomoko Hirama; C.R Mackenzie; Helmut Brade; Stephen V. Evans

The structures of antigen-binding fragments from two related monoclonal antibodies have been determined to high resolution in the presence of several carbohydrate antigens raised against chlamydial lipopolysaccharide. With the exception of CDR H3, antibodies S54-10 and S73-2 are both derived from the same set of germline gene segments as the previously reported structures S25-2 and S45-18. Despite this similarity, the antibodies differ in specificity and the mechanism by which they recognize their cognate antigen. S54-10 uses an unrelated CDR H3 to recognize its antigen in a fashion analogous to S45-18; however, S73-2 recognizes the same antigen as S45-18 and S54-10 in a wholly unrelated manner. Together, these antibody-antigen structures provide snapshots into how the immune system uses the same set of inherited germline gene segments to generate multiple possible specificities that allow for differential recognition of epitopes and how unrelated CDR H3 sequences can result in convergent binding of clinically relevant bacterial antigens.


Molecular and Cellular Biology | 2012

Mannose 6 Dephosphorylation of Lysosomal Proteins Mediated by Acid Phosphatases Acp2 and Acp5

Georgia Makrypidi; Markus Damme; Sven Müller-Loennies; Maria Trusch; Bernhard Schmidt; Hartmut Schlüter; Joerg Heeren; Torben Lübke; Paul Saftig; Thomas Braulke

ABSTRACT Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5−/−) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5−/− mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products.

Collaboration


Dive into the Sven Müller-Loennies's collaboration.

Top Co-Authors

Avatar

Helmut Brade

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Buko Lindner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge