Sven Sahle
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sven Sahle.
Bioinformatics | 2006
Stefan Hoops; Sven Sahle; Ralph Gauges; Christine Lee; Jürgen Pahle; Natalia Simus; Mudita Singhal; Liang Xu; Pedro Mendes; Ursula Kummer
MOTIVATION Simulation and modeling is becoming a standard approach to understand complex biochemical processes. Therefore, there is a big need for software tools that allow access to diverse simulation and modeling methods as well as support for the usage of these methods. RESULTS Here, we present COPASI, a platform-independent and user-friendly biochemical simulator that offers several unique features. We discuss numerical issues with these features; in particular, the criteria to switch between stochastic and deterministic simulation methods, hybrid deterministic-stochastic methods, and the importance of random number generator numerical resolution in stochastic simulation. AVAILABILITY The complete software is available in binary (executable) for MS Windows, OS X, Linux (Intel) and Sun Solaris (SPARC), as well as the full source code under an open source license from http://www.copasi.org.
Nature Biotechnology | 2009
Nicolas Le Novère; Michael Hucka; Huaiyu Mi; Stuart L. Moodie; Falk Schreiber; Anatoly A. Sorokin; Emek Demir; Katja Wegner; Mirit I. Aladjem; Sarala M. Wimalaratne; Frank T. Bergman; Ralph Gauges; Peter Ghazal; Hideya Kawaji; Lu Li; Yukiko Matsuoka; Alice Villéger; Sarah E. Boyd; Laurence Calzone; Mélanie Courtot; Ugur Dogrusoz; Tom C. Freeman; Akira Funahashi; Samik Ghosh; Akiya Jouraku; Sohyoung Kim; Fedor A. Kolpakov; Augustin Luna; Sven Sahle; Esther Schmidt
Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling.
Methods of Molecular Biology | 2009
Pedro Mendes; Stefan Hoops; Sven Sahle; Ralph Gauges; Joseph O. Dada; Ursula Kummer
Computational modeling and simulation of biochemical networks is at the core of systems biology and this includes many types of analyses that can aid understanding of how these systems work. COPASI is a generic software package for modeling and simulation of biochemical networks which provides many of these analyses in convenient ways that do not require the user to program or to have deep knowledge of the numerical algorithms. Here we provide a description of how these modeling techniques can be applied to biochemical models using COPASI. The focus is both on practical aspects of software usage as well as on the utility of these analyses in aiding biological understanding. Practical examples are described for steady-state and time-course simulations, stoichiometric analyses, parameter scanning, sensitivity analysis (including metabolic control analysis), global optimization, parameter estimation, and stochastic simulation. The examples used are all published models that are available in the BioModels database in SBML format.
BMC Systems Biology | 2011
Dagmar Waltemath; Richard Adams; Frank Bergmann; Michael Hucka; Fedor A. Kolpakov; Andrew K. Miller; Ion I. Moraru; David Nickerson; Sven Sahle; Jacky L. Snoep; Nicolas Le Novère
BackgroundThe increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools.ResultsIn this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions.ConclusionsWith SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined.
PLOS Computational Biology | 2011
Dagmar Waltemath; Richard Adams; Daniel A. Beard; Frank Bergmann; Upinder S. Bhalla; Randall Britten; Vijayalakshmi Chelliah; Mike T. Cooling; Jonathan Cooper; Edmund J. Crampin; Alan Garny; Stefan Hoops; Michael Hucka; Peter Hunter; Edda Klipp; Camille Laibe; Andrew K. Miller; Ion I. Moraru; David Nickerson; Poul M. F. Nielsen; Macha Nikolski; Sven Sahle; Herbert M. Sauro; Henning Schmidt; Jacky L. Snoep; Dominic P. Tolle; Olaf Wolkenhauer; Nicolas Le Novère
Reproducibility of experiments is a basic requirement for science. Minimum Information (MI) guidelines have proved a helpful means of enabling reuse of existing work in modern biology. The Minimum Information Required in the Annotation of Models (MIRIAM) guidelines promote the exchange and reuse of biochemical computational models. However, information about a model alone is not sufficient to enable its efficient reuse in a computational setting. Advanced numerical algorithms and complex modeling workflows used in modern computational biology make reproduction of simulations difficult. It is therefore essential to define the core information necessary to perform simulations of those models. The Minimum Information About a Simulation Experiment (MIASE, Glossary in Box 1) describes the minimal set of information that must be provided to make the description of a simulation experiment available to others. It includes the list of models to use and their modifications, all the simulation procedures to apply and in which order, the processing of the raw numerical results, and the description of the final output. MIASE allows for the reproduction of any simulation experiment. The provision of this information, along with a set of required models, guarantees that the simulation experiment represents the intention of the original authors. Following MIASE guidelines will thus improve the quality of scientific reporting, and will also allow collaborative, more distributed efforts in computational modeling and simulation of biological processes.
Philosophical Transactions of the Royal Society A | 2008
Sven Sahle; Pedro Mendes; Stefan Hoops; Ursula Kummer
An integral part of any systems biology approach is the modelling and simulation of the respective system under investigation. However, the values of many parameters of the system have often not been determined or are not identifiable due to technical experimental difficulties or other constraints. Sensitivity analysis is often employed to quantify the importance of each of the models parameters in the behaviour of the system. This approach can also be useful in identifying those parts of the system that are most sensitive with the potential of becoming drug targets. A problem of the commonly used methods of sensitivity analysis is that they constitute local methods meaning that they depend directly on the exact parameter space, which in turn is not known exactly. One way to circumvent this problem is to carry out sensitivity analysis over a wide range of values for all parameters, but this is handicapped by expensive computations when the systems are high dimensional. Another approach is to employ global sensitivity analysis, which in this context is mostly based on random sampling methods. In this paper we present an efficient approach that involves using numerical optimizing methods that search a wide region of parameter space for a given model to determine the maximum and minimum values of its metabolic control coefficients. A relevant example for drug development is presented to demonstrate the strategy using the software COPASI.
FEBS Journal | 2011
Katrin Hübner; Sven Sahle; Ursula Kummer
Systems biology has received an ever increasing interest during the last decade. A large amount of third‐party funding is spent on this topic, which involves quantitative experimentation integrated with computational modeling. Industrial companies are also starting to use this approach more and more often, especially in pharmaceutical research and biotechnology. This leads to the question of whether such interest is wisely invested and whether there are success stories to be told for basic science and/or technology/biomedicine. In this review, we focus on the application of systems biology approaches that have been employed to shed light on both biochemical functions and previously unknown mechanisms. We point out which computational and experimental methods are employed most frequently and which trends in systems biology research can be observed. Finally, we discuss some problems that we have encountered in publications in the field.
Bioinformatics | 2006
Ralph Gauges; Ursula Rost; Sven Sahle; Katja Wegner
MOTIVATION Since the knowledge about processes in living cells is increasing, modelling and simulation techniques are used to get new insights into these complex processes. During the last few years, the SBML file format has gained in popularity and support as a means of exchanging model data between the different modelling and simulation tools. In addition to specifying the model as a set of equations, many modern modelling tools allow the user to create and to interact with the model in the form of a reaction graph. Unfortunately, the SBML file format does not provide for the storage of this graph data along with the mathematical description of the model. RESULTS Therefore, we developed an extension to the SBML file format that makes it possible to store such layout information which describes position and size of objects in the graphical representation. AVAILABILITY The complete specification can be found on (http://projects.villa-bosch.de/bcb/sbml/ (SBML Layout Extension documentation, 2005). Additionally, a complete implementation exists as part of libSBML (2006, http://www.sbml.org/software/libsbml/).
FEBS Journal | 2010
Tim Maiwald; Annette Schneider; Hauke Busch; Sven Sahle; Norbert Gretz; Thomas S. Weiss; Ursula Kummer; Ursula Klingmüller
Type I interferons (IFN) are important components of the innate antiviral response. A key signalling pathway activated by IFNα is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Major components of the pathway have been identified. However, critical kinetic properties that facilitate accelerated initiation of intracellular antiviral signalling and thereby promote virus elimination remain to be determined. By combining mathematical modelling with experimental analysis, we show that control of dynamic behaviour is not distributed among several pathway components but can be primarily attributed to interferon regulatory factor 9 (IRF9), constituting a positive feedback loop. Model simulations revealed that increasing the initial IRF9 concentration reduced the time to peak, increased the amplitude and enhanced termination of pathway activation. These model predictions were experimentally verified by IRF9 over‐expression studies. Furthermore, acceleration of signal processing was linked to more rapid and enhanced expression of IFNα target genes. Thus, the amount of cellular IRF9 is a crucial determinant for amplification of early dynamics of IFNα‐mediated signal transduction.
Bioinformatics | 2008
Andreas Weidemann; Stefan Richter; Matthias Stein; Sven Sahle; Ralph Gauges; Razif R. Gabdoulline; Irina Surovtsova; Nils Semmelrock; Bruno Besson; Isabel Rojas; Rebecca C. Wade; Ursula Kummer
UNLABELLED SYCAMORE is a browser-based application that facilitates construction, simulation and analysis of kinetic models in systems biology. Thus, it allows e.g. database supported modelling, basic model checking and the estimation of unknown kinetic parameters based on protein structures. In addition, it offers some guidance in order to allow non-expert users to perform basic computational modelling tasks. AVAILABILITY SYCAMORE is freely available for academic use at http://sycamore.eml.org. Commercial users may acquire a license. CONTACT [email protected].