Svend Kamysek
University of Rostock
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svend Kamysek.
Clinica Chimica Acta | 2008
Wolfram Miekisch; Patricia Fuchs; Svend Kamysek; Christine Neumann; Jochen K. Schubert
BACKGROUND Breath analysis could offer a non-invasive means of drug monitoring if adequate analytical methods and robust correlations between drug concentrations in breath and blood can be established. We therefore applied headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to assess breath and blood concentrations of the intravenous drug propofol in patients under anesthesia or sedation. METHODS Arterial, central- and peripheral-venous blood and alveolar breath samples were drawn in parallel from 16 mechanically ventilated patients. In addition, six patients undergoing lung resection were investigated. Substances were preconcentrated by means of HS-SPME, separated by GC and identified by MS. RESULTS Propofol detection limits were 0.006 nmol/L in breath and 72.20 nmol/L in blood, the quantitation limits were 0.009 nmol/L and 75.89 nmol/L (end tidal breath/blood). Intraday precision was 8-11%, recovery 97-103%. Propofol concentrations were 0.04-0.5 nmol/L in breath and 2-120 micromol/L in blood. Only arterial propofol concentrations showed a correlation with concentrations in breath. Impaired ventilation/perfusion ratios in patients under lung resection resulted in changes of correlation coefficients. CONCLUSIONS Reliable and precise analytical methods such as HS-SPME-GC-MS represent basic requirements if breath analysis is to be set up for non-invasive monitoring of intravenous drugs and control of anesthesia.
Analytical and Bioanalytical Chemistry | 2011
Svend Kamysek; Patricia Fuchs; Henny Schwoebel; Jan P. Roesner; Sabine Kischkel; Kathi Wolter; Christian Loeseken; Jochen K. Schubert; Wolfram Miekisch
AbstractBreath analysis could offer a non-invasive means of intravenous drug monitoring if robust correlations between drug concentrations in breath and blood can be established. In this study, propofol blood and breath concentrations were determined in an animal model under varying physiological conditions. Propofol concentrations in breath were determined by means of two independently calibrated analytical methods: continuous, real-time proton transfer reaction mass spectrometry (PTR-MS) and discontinuous solid-phase micro-extraction coupled with gas chromatography mass spectrometry (SPME-GC-MS). Blood concentrations were determined by means of SPME-GC-MS. Effects of changes in pulmonary blood flow resulting in a decreased cardiac output (CO) and effects of dobutamine administration resulting in an increased CO on propofol breath concentrations and on the correlation between propofol blood and breath concentrations were investigated in seven acutely instrumented pigs. Discontinuous propofol determination in breath by means of alveolar sampling and SPME-GC-MS showed good agreement (R2 = 0.959) with continuous alveolar real-time measurement by means of PTR-MS. In all investigated animals, increasing cardiac output led to a deterioration of the relationship between breath and blood propofol concentrations (R2 = 0.783 for gas chromatography-mass spectrometry and R2 = 0.795 for PTR-MS). Decreasing pulmonary blood flow and cardiac output through banding of the pulmonary artery did not significantly affect the relationship between propofol breath and blood concentrations (R2 > 0.90). Estimation of propofol blood concentrations from exhaled alveolar concentrations seems possible by means of different analytical methods even when cardiac output is decreased. Increases in cardiac output preclude prediction of blood propofol concentration from exhaled concentrations. FigureExperimental setup for simultaneous real-time (PTR-MS) and discontinuous (SPME-GC-MS) drug determination in the breath of acutely instrumented pigs (A). In order to assess the influence of hemodynamic variables pulmonary artery blood flow was determined by means of Doppler-measurement (B).
Journal of Breath Research | 2017
Beate Brock; Svend Kamysek; Josephine Silz; Phillip Trefz; Jochen K. Schubert; Wolfram Miekisch
Analysis of exhaled VOCs can provide information on physiology, metabolic processes, oxidative stress and lung diseases. In critically ill patients, VOC analysis may be used to gain complimentary information beyond global clinical parameters. This seems especially attractive in mechanically ventilated patients frequently suffering from impairment of gas exchange. This study was intended to assess (a) the effects of recruitment maneuvers onto VOC profiles, (b) the correlations between electrical impedance tomography (EIT) data and VOC profiles and (c) the effects of recruitment onto distribution of ventilation. Eleven mechanically ventilated patients were investigated during lung recruitment after cardiac surgery. Continuous breath gas analysis by means of PTR-ToF-MS, EIT and blood gas analyses were performed simultaneously. More than 300 mass traces could be detected and monitored continuously by means of PTR-ToF-MS in every patient. Exhaled VOC concentrations varied with recruitment induced changes in minute ventilation and cardiac output. Ammonia exhalation depended on blood pH. The improvement in dorsal lung ventilation during recruitment ranged from 9% to 110%. Correlations between exhaled concentrations of acetone, isoprene, benzene sevoflurane and improvement in regional ventilation during recruitment were observed. Extent and quality of these correlations depended on physico-chemical properties of the VOCs. Combination of continuous real-time breath analysis and EIT revealed correlations between exhaled VOC concentrations and distribution of ventilation. This setup enabled immediate recognition of physiological and therapeutic effects in ICU patients. In a perspective, VOC analysis could be used for non-invasive control and optimization of ventilation strategies.
Scientific Reports | 2016
Pritam Sukul; Jochen K. Schubert; Peter Oertel; Svend Kamysek; Khushman Taunk; Phillip Trefz; Wolfram Miekisch
Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.
Journal of Breath Research | 2017
Pritam Sukul; Jochen K. Schubert; Svend Kamysek; Phillip Trefz; Wolfram Miekisch
Respiratory parameters such as flow or rate have complex effects on the exhalation of volatile substances and can hamper clinical interpretation of breath biomarkers. We have investigated the effects of progressively applied upper-airway resistances on the exhalation of volatile organic compounds (VOCs) in healthy humans. We performed real-time mass-spectrometric determination of breath volatiles in 50 subjects with parallel, non-invasive hemodynamic monitoring, breath-resolved spirometry and capnometry during controlled tidal breathing (12 breaths/min). Airway resistance was increased by changing the mouthpiece diameters from 2.5 cm to 1.0 cm and to 0.5 cm. At the smallest diameter, oxygen uptake increased (35%↑). Cardiac output decreased (6%↓) but end-tidal PCO2 (8%↑) and exhalation of blood-borne isoprene (19%↑) increased. Carbon dioxide production remained constant. Furan, hydrogen sulphide mirrored isoprene. Despite lowered minute ventilation (4%↓) acetone concentrations decreased (3%↓). Exogenous acetonitrile, propionic acid, isopropanol, limonene mimicked acetone. VOC concentration changes could be modelled through substance volatility. Airway resistance-induced changes in hemodynamics, and ventilation can affect VOC exhalation and thereby interfere with breath biomarker interpretation. The effects of collateral ventilation, intra-alveolar pressure gradients and respiratory mechanics had to be considered to explain the exhalation kinetics of CO2 and VOCs. Conventional breath sampling via smaller mouthpiece diameters (≤1.0 cm, e.g. via straw in Tedlar bags or canisters, etc) will immediately affect VOC exhalation and thereby mislead the analysis of the obtained results. Endogenous isoprene may probe respiratory muscle workload under obstructive conditions. Breath-gas analysis might enhance our understanding of diagnosis and management of obstructive lung diseases in the future.
BMC Emergency Medicine | 2017
Patricia Fuchs; Juliane Obermeier; Svend Kamysek; Martin Degner; Hannes Nierath; Henning Jürß; Hartmut Ewald; Jens Schwarz; Martin Becker; Jochen K. Schubert
BackgroundContemporary resuscitation guidelines for basic life support recommend an immediate onset of cardiac compressions in case of cardiac arrest followed by rescue breaths. Effective ventilation is often omitted due to fear of doing harm and fear of infectious diseases. In order to improve ventilation a pre-stage of an automatic respirator was developed for use by laypersons.MethodsFifty-two healthy volunteers were ventilated by means of a prototype respirator via a full-face mask in a pilot study. The pre-stage public access ventilator (PAV) consisted of a low-cost self-designed turbine, with sensors for differential pressure, flow, FO2, FCO2 and 3-axis acceleration measurement. Sensor outputs were used to control the respirator and to recognize conditions relevant for efficiency of ventilation and patients’ safety. Different respiratory manoeuvres were applied: a) pressure controlled ventilation (PCV), b) PCV with controlled leakage and c) PCV with simulated airway occlusion. Sensor signals were analysed to detect leakage and airway occlusion. Detection based upon sensor signals was compared with evaluation based on clinical observation and additional parameters such as exhaled CO2.ResultsPressure controlled ventilation could be realized in all volunteers. Leakage was recognized with 93.5% sensitivity and 93.5% specificity. Simulated airway occlusion was detected with 91.8% sensitivity and 91.7% specificity.ConclusionThe pre-stage PAV was able to detect potential complications relevant for patients’ safety such as leakage and airway occlusion in a proof of principle study. Prospectively, this device provides a respectable basis for the development of an automatic emergency respirator and may help to improve bystander resuscitation.
Proceedings of SPIE | 2016
Ulrich Timm; Jens Kraitl; Helge Gewiss; Svend Kamysek; Beate Brock; Hartmut Ewald
This paper will describe a novel multi-wavelength photometric method to measure carboxyhemoglobin (COHb) and methemoglobin (MetHb) concentration non-invasively. COHb and MetHb are so called dysfunctional hemoglobin derivatives and they are not able to carry oxygen. Standard pulse oximeters are only able to measure two derivatives, namely oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) but the presence of other derivatives in the blood may distort the readings. The paper presents a new approach of a noninvasive sensor system to measure COHb and MetHb and the validation in vivo and in vitro.
Analytical Chemistry | 2013
Phillip Trefz; Markus Schmidt; Peter Oertel; Juliane Obermeier; Beate Brock; Svend Kamysek; Jürgen Dunkl; Ralf Zimmermann; Jochen K. Schubert; Wolfram Miekisch
Journal of Breath Research | 2015
Pritam Sukul; Phillip Trefz; Svend Kamysek; Jochen K. Schubert; Wolfram Miekisch
Journal of Breath Research | 2017
Phillip Trefz; Svend Kamysek; Patricia Fuchs; Pritam Sukul; Jochen K. Schubert; Wolfram Miekisch