Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svenja Simon is active.

Publication


Featured researches published by Svenja Simon.


BMC Genomics | 2014

Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces

Richard Landstorfer; Svenja Simon; Steffen Schober; Daniel A. Keim; Siegfried Scherer; Klaus Neuhaus

BackgroundMultiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems.ResultsTranscriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates.ConclusionsSince only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research.


ieee vgtc conference on visualization | 2011

Visual boosting in pixel-based visualizations

Daniela Oelke; Halldor Janetzko; Svenja Simon; Klaus Neuhaus; Daniel A. Keim

Pixel‐based visualizations have become popular, because they are capable of displaying large amounts of data and at the same time provide many details. However, pixel‐based visualizations are only effective if the data set is not sparse and the data distribution not random. Single pixels – no matter if they are in an empty area or in the middle of a large area of differently colored pixels – are perceptually difficult to discern and may therefore easily be missed. Furthermore, trends and interesting passages may be camouflaged in the sea of details. In this paper we compare different approaches for visual boosting in pixel‐based visualizations. Several boosting techniques such as halos, background coloring, distortion, and hatching are discussed and assessed with respect to their effectiveness in boosting single pixels, trends, and interesting passages. Application examples from three different domains (document analysis, genome analysis, and geospatial analysis) show the general applicability of the techniques and the derived guidelines.


PLOS ONE | 2014

Mining Rare Associations between Biological Ontologies

Fernando Benites; Svenja Simon; Elena P. Sapozhnikova

The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.


Fems Microbiology Letters | 2014

Phenotype of htgA (mbiA), a recently evolved orphan gene of Escherichia coli and Shigella, completely overlapping in antisense to yaaW

Lea Fellner; Niklas Bechtel; Michael Witting; Svenja Simon; Philippe Schmitt-Kopplin; Daniel A. Keim; Siegfried Scherer; Klaus Neuhaus

Overlapping embedded genes, such as htgA/yaaW, are assumed to be rare in prokaryotes. In Escherichia coli O157:H7, gfp fusions of both promoter regions revealed activity and transcription start sites could be determined for both genes. Both htgA and yaaW were inactivated strand specifically by introducing a stop codon. Both mutants exhibited differential phenotypes in biofilm formation and metabolite levels in a nontargeted analysis, suggesting that both are functional despite YaaW but not HtgA could be expressed. While yaaW is distributed all over the Gammaproteobacteria, an overlapping htgA-like sequence is restricted to the Escherichia-Klebsiella clade. Full-length htgA is only present in Escherichia and Shigella, and htgA showed evidence for purifying selection. Thus, htgA is an interesting case of a lineage-specific, nonessential and young orphan gene.


BMC Genomics | 2016

Translatomics combined with transcriptomics and proteomics reveals novel functional, recently evolved orphan genes in Escherichia coli O157:H7 (EHEC)

Klaus Neuhaus; Richard Landstorfer; Lea Fellner; Svenja Simon; Andrea Schafferhans; Tatyana Goldberg; Harald Marx; Olga N. Ozoline; Burkhard Rost; Bernhard Kuster; Daniel A. Keim; Siegfried Scherer

BackgroundGenomes of E. coli, including that of the human pathogen Escherichia coli O157:H7 (EHEC) EDL933, still harbor undetected protein-coding genes which, apparently, have escaped annotation due to their small size and non-essential function. To find such genes, global gene expression of EHEC EDL933 was examined, using strand-specific RNAseq (transcriptome), ribosomal footprinting (translatome) and mass spectrometry (proteome).ResultsUsing the above methods, 72 short, non-annotated protein-coding genes were detected. All of these showed signals in the ribosomal footprinting assay indicating mRNA translation. Seven were verified by mass spectrometry. Fifty-seven genes are annotated in other enterobacteriaceae, mainly as hypothetical genes; the remaining 15 genes constitute novel discoveries. In addition, protein structure and function were predicted computationally and compared between EHEC-encoded proteins and 100-times randomly shuffled proteins. Based on this comparison, 61 of the 72 novel proteins exhibit predicted structural and functional features similar to those of annotated proteins. Many of the novel genes show differential transcription when grown under eleven diverse growth conditions suggesting environmental regulation. Three genes were found to confer a phenotype in previous studies, e.g., decreased cattle colonization.ConclusionsThese findings demonstrate that ribosomal footprinting can be used to detect novel protein coding genes, contributing to the growing body of evidence that hypothetical genes are not annotation artifacts and opening an additional way to study their functionality. All 72 genes are taxonomically restricted and, therefore, appear to have evolved relatively recently de novo.


BMC Genomics | 2017

Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP

Klaus Neuhaus; Richard Landstorfer; Svenja Simon; Steffen Schober; Patrick R. Wright; Cameron Smith; Rolf Backofen; Romy Wecko; Daniel A. Keim; Siegfried Scherer

BackgroundWhile NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA.ResultsBased on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition.ConclusionDetermination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well.


eurographics | 2015

Bridging the Gap of Domain and Visualization Experts with a Liaison

Svenja Simon; Sebastian Mittelstädt; Daniel A. Keim; Michael Sedlmair

We introduce the role Liaison for design study projects. With considerable expertise in visualization and the application domain, a Liaison can help to foster richer and more effective interdisciplinary communication in problem characterization, design, and evaluation processes. We characterize this role, provide a list of tasks of Liaison and visualization experts, and discuss concrete benefits and potential limitations based on our experience from multiple design studies. To illustrate our contributions we use as an example a molecular biology design study.


2011 IEEE Symposium on Biological Data Visualization (BioVis). | 2011

Visual analysis of next-generation sequencing data to detect overlapping genes in bacterial genomes

Svenja Simon; Daniela Oelke; Richard Landstorfer; Klaus Neuhaus; Daniel A. Keim

Next generation sequencing (NGS) technologies are about to revolutionize biological research. Being able to sequence large amounts of DNA or, indirectly, RNA sequences in a short time period opens numerous new possibilities. However, analyzing the large amounts of data generated in NGS is a serious challenge, which requires novel data analysis and visualization methods to allow the biological experimenter to understand the results. In this paper, we describe a novel system to deal with the flood of data generated by transcriptome sequencing (RNA-seq) using NGS. Our system allows the analyzer to get a quick overview of the data and interactively explore interesting regions based on the three important parameters coverage, transcription, and fit. In particular, our system supports the NGS analysis in the following respects: (1) Representation of the coverage sequence in a way that no artifacts are introduced. (2) Easy determination of a fit of an open reading frame (ORF) to a transcript by mapping the coverage sequence directly into the ORF representation. (3) Providing automatic support for finding interesting regions to address the problems that the overwhelming volume of data comes with. (4) Providing an overview representation that allows parameter tuning and enables quick access to interesting areas of the genome. We show the usefulness of our system by a case study in the area of overlapping gene detection in a bacterial genome.


Journal of Proteome Research | 2016

Proteomic Profiling of Serological Responses to Aspergillus fumigatus Antigens in Patients with Invasive Aspergillosis

Janka Teutschbein; Svenja Simon; Jasmin Lother; Jan Springer; Peter Hortschansky; C. Oliver Morton; Jürgen Löffler; Hermann Einsele; Eibhlin Conneally; Thomas R. Rogers; Reinhard Guthke; Axel A. Brakhage; Olaf Kniemeyer

Aspergillus fumigatus is the species that most commonly causes the opportunistic infection invasive aspergillosis (IA) in patients being treated for hematological malignancies. Little is known about the A. fumigatus proteins that trigger the production of Aspergillus-specific IgG antibodies during the course of IA. To characterize the serological response to A. fumigatus protein antigens, mycelial proteins were separated by 2-D gel electrophoresis. The gels were immunoblotted with sera from patients with probable and proven IA and control patients without IA. We identified 49 different fungal proteins, which gave a positive IgG antibody signal. Most of these antigens play a role in primary metabolism and stress responses. Overall, our analysis identified 18 novel protein antigens from A. fumigatus. To determine whether these antigens can be used as diagnostic or prognostic markers or exhibit a protective activity, we employed supervised machine learning with decision trees. We identified two candidates for further analysis, the protein antigens CpcB and Shm2. Heterologously produced Shm2 induced a strongly proinflammatory response in human peripheral blood mononuclear cells after in vitro stimulation. In contrast, CpcB did not activate the immune response of PBMCs. These findings could serve as the basis for the development of an immunotherapy of IA.


BMC Evolutionary Biology | 2015

Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting

Lea Fellner; Svenja Simon; Christian Scherling; Michael Witting; Steffen Schober; Christine Polte; Philippe Schmitt-Kopplin; Daniel A. Keim; Siegfried Scherer; Klaus Neuhaus

BackgroundGene duplication is believed to be the classical way to form novel genes, but overprinting may be an important alternative. Overprinting allows entirely novel proteins to evolve de novo, i.e., formerly non-coding open reading frames within functional genes become expressed. Only three cases have been described for Escherichia coli. Here, a fourth example is presented.ResultsRNA sequencing revealed an open reading frame weakly transcribed in cow dung, coding for 101 residues and embedded completely in the −2 reading frame of citC in enterohemorrhagic E. coli. This gene is designated novel overlapping gene, nog1. The promoter region fused to gfp exhibits specific activities and 5’ rapid amplification of cDNA ends indicated the transcriptional start 40-bp upstream of the start codon. nog1 was strand-specifically arrested in translation by a nonsense mutation silent in citC. This Nog1-mutant showed a phenotype in competitive growth against wild type in the presence of MgCl2. Small differences in metabolite concentrations were also found. Bioinformatic analyses propose Nog1 to be inner membrane-bound and to possess at least one membrane-spanning domain. A phylogenetic analysis suggests that the orphan gene nog1 arose by overprinting after Escherichia/Shigella separated from the other γ-proteobacteria.ConclusionsSince nog1 is of recent origin, non-essential, short, weakly expressed and only marginally involved in E. coli’s central metabolism, we propose that this gene is in an initial stage of evolution. While we present specific experimental evidence for the existence of a fourth overlapping gene in enterohemorrhagic E. coli, we believe that this may be an initial finding only and overlapping genes in bacteria may be more common than is currently assumed by microbiologists.

Collaboration


Dive into the Svenja Simon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Schreck

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge