Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svenja Stöven is active.

Publication


Featured researches published by Svenja Stöven.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Caspase-mediated processing of the Drosophila NF-kappaB factor Relish.

Svenja Stöven; Neal S. Silverman; Anna Junell; Marika Hedengren-Olcott; Deniz Erturk; Ylva Engström; Tom Maniatis; Dan Hultmark

The NF-κB-like transcription factor Relish plays a central role in the innate immune response of Drosophila. Unlike other NF-κB proteins, Relish is activated by endoproteolytic cleavage to generate a DNA-binding Rel homology domain and a stable IκB-like fragment. This signal-induced endoproteolysis requires the activity of several gene products, including the IκB kinase complex and the caspase Dredd. Here we used mutational analysis and protein microsequencing to demonstrate that a caspase target site, located in the linker region between the Rel and the IκB-like domain, is the site of signal-dependent cleavage. We also show physical interaction between Relish and Dredd, suggesting that Dredd indeed is the Relish endoprotease. In addition to the caspase target site, the C-terminal 107 aa of Relish are required for endoproteolysis and signal-dependent phosphorylation by the Drosophila IκB kinase β. Finally, an N-terminal serine-rich region in Relish and the PEST domain were found to negatively regulate Relish activation.


EMBO Reports | 2000

Activation of the Drosophila NF‐κB factor Relish by rapid endoproteolytic cleavage

Svenja Stöven; István Andó; Latha Kadalayil; Ylva Engström; Dan Hultmark

The Rel/NF‐κB transcription factor Relish plays a key role in the humoral immune response in Drosophila. We now find that activation of this innate immune response is preceded by rapid proteolytic cleavage of Relish into two parts. An N‐terminal fragment, containing the DNA‐binding Rel homology domain, translocates to the nucleus where it binds to the promoter of the Cecropin A1 gene and probably to the promoters of other antimicrobial peptide genes. The C‐terminal IκB‐like fragment remains in the cytoplasm. This endoproteolytic cleavage does not involve the proteasome, requires the DREDD caspase, and is different from previously described mechanisms for Rel factor activation.


The EMBO Journal | 2005

Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway

Anni Kleino; Susanna Valanne; Johanna Ulvila; Jenni Kallio; Henna Myllymäki; Heidi Enwald; Svenja Stöven; Mickael Poidevin; Ryu Ueda; Dan Hultmark; Bruno Lemaitre; Mika Rämet

The Imd signaling cascade, similar to the mammalian TNF‐receptor pathway, controls antimicrobial peptide expression in Drosophila. We performed a large‐scale RNAi screen to identify novel components of the Imd pathway in Drosophila S2 cells. In all, 6713 dsRNAs from an S2 cell‐derived cDNA library were analyzed for their effect on Attacin promoter activity in response to Escherichia coli. We identified seven gene products required for the Attacin response in vitro, including two novel Imd pathway components: inhibitor of apoptosis 2 (Iap2) and transforming growth factor‐activated kinase 1 (TAK1)‐binding protein (TAB). Iap2 is required for antimicrobial peptide response also by the fat body in vivo. Both these factors function downstream of Imd. Neither TAB nor Iap2 is required for Relish cleavage, but may be involved in Relish nuclear localization in vitro, suggesting a novel mode of regulation of the Imd pathway. Our results show that an RNAi‐based approach is suitable to identify genes in conserved signaling cascades.


The EMBO Journal | 2006

Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways

Joseph R. Delaney; Svenja Stöven; Hanna Uvell; Kathryn V. Anderson; Ylva Engström; Marek Mlodzik

Jun N‐terminal kinase (JNK) signaling is a highly conserved pathway that controls both cytoskeletal remodeling and transcriptional regulation in response to a wide variety of signals. Despite the importance of JNK in the mammalian immune response, and various suggestions of its importance in Drosophila immunity, the actual contribution of JNK signaling in the Drosophila immune response has been unclear. Drosophila TAK1 has been implicated in the NF‐κB/Relish‐mediated activation of antimicrobial peptide genes. However, we demonstrate that Relish activation is intact in dTAK1 mutant animals, and that the immune response in these mutant animals was rescued by overexpression of a downstream JNKK. The expression of a JNK inhibitor and induction of JNK loss‐of‐function clones in immune responsive tissue revealed a general requirement for JNK signaling in the expression of antimicrobial peptides. Our data indicate that dTAK1 is not required for Relish activation, but instead is required in JNK signaling for antimicrobial peptide gene expression.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes.

Deniz Erturk-Hasdemir; Meike Broemer; François Leulier; William S. Lane; Nicholas Paquette; Daye Hwang; Chan-Hee Kim; Svenja Stöven; Pascal Meier; Neal S. Silverman

The Drosophila NF-κB transcription factor Relish is an essential regulator of antimicrobial peptide gene induction after Gram-negative bacterial infection. Relish is a bipartite NF-κB precursor protein, with an N-terminal Rel homology domain and a C-terminal IκB-like domain, similar to mammalian p100 and p105. Unlike these mammalian homologs, Relish is endoproteolytically cleaved after infection, allowing the N-terminal NF-κB module to translocate to the nucleus. Signal-dependent activation of Relish, including cleavage, requires both the Drosophila IκB kinase (IKK) and death-related ced-3/Nedd2-like protein (DREDD), the Drosophila caspase-8 like protease. In this report, we show that the IKK complex controls Relish by direct phosphorylation on serines 528 and 529. Surprisingly, these phosphorylation sites are not required for Relish cleavage, nuclear translocation, or DNA binding. Instead they are critical for recruitment of RNA polymerase II and antimicrobial peptide gene induction, whereas IKK functions noncatalytically to support Dredd-mediated cleavage of Relish.


Cellular Microbiology | 2008

Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis

Malin Vonkavaara; Maxim V. Telepnev; Patrik Rydén; Anders Sjöstedt; Svenja Stöven

Drosophila melanogaster is a widely used model organism for research on innate immunity and serves as an experimental model for infectious diseases. The aetiological agent of the zoonotic disease tularaemia, Francisella tularensis, can be transmitted by ticks and mosquitoes and Drosophila might be a useful, genetically amenable model host to elucidate the interactions between the bacterium and its arthropod vectors. We found that the live vaccine strain of F. tularensis was phagocytosed by Drosophila and multiplied in fly haemocytes in vitro and in vivo. Bacteria injected into flies resided both inside haemocytes and extracellularly in the open circulatory system. A continuous activation of the humoral immune response, i.e. production of antimicrobial peptides under control of the imd/Relish signalling pathway, was observed and it may have contributed to the relative resistance to F. tularensis as flies defective in the imd/Relish pathway died rapidly. Importantly, bacterial strains deficient for genes of the F. tularensis intracellular growth locus or the macrophage growth locus were attenuated in D. melanogaster. Our results demonstrate that D. melanogaster is a suitable model for the analysis of interactions between F. tularensis and its arthropod hosts and that it can also be used to identify F. tularensis virulence factors relevant for mammalian hosts.


Infection and Immunity | 2010

Directed Screen of Francisella novicida Virulence Determinants Using Drosophila melanogaster

Monika K. Åhlund; Patrik Rydén; Anders Sjöstedt; Svenja Stöven

ABSTRACT Francisella tularensis is a highly virulent, facultative intracellular human pathogen whose virulence mechanisms are not well understood. Occasional outbreaks of tularemia and the potential use of F. tularensis as a bioterrorist agent warrant better knowledge about the pathogenicity of this bacterium. Thus far, genome-wide in vivo screens for virulence factors have been performed in mice, all however restricted by the necessity to apply competition-based, negative-selection assays. We wanted to individually evaluate putative virulence determinants suggested by such assays and performed directed screening of 249 F. novicida transposon insertion mutants by using survival of infected fruit flies as a measure of bacterial virulence. Some 20% of the genes tested were required for normal virulence in flies; most of these had not previously been investigated in detail in vitro or in vivo. We further characterized their involvement in bacterial proliferation and pathogenicity in flies and in mouse macrophages. Hierarchical cluster analysis of mutant phenotypes indicated a functional linkage between clustered genes. One cluster grouped all but four genes of the Francisella pathogenicity island and other loci required for intracellular survival. We also identified genes involved in adaptation to oxidative stress and genes which might induce host energy wasting. Several genes related to type IV pilus formation demonstrated hypervirulent mutant phenotypes. Collectively, the data demonstrate that the bacteria in part use similar virulence mechanisms in mammals as in Drosophila melanogaster but that a considerable proportion of the virulence factors active in mammals are dispensable for pathogenicity in the insect model.


Journal of Immunology | 2001

Enteric Bacteria Counteract Lipopolysaccharide Induction of Antimicrobial Peptide Genes

Hans Lindmark; Karin Johansson; Svenja Stöven; Dan Hultmark; Ylva Engström; Kenneth Söderhäll

The humoral immunity of Drosophila involves the production of antimicrobial peptides, which are induced by evolutionary conserved microbial molecules, like LPS. By using Drosophila mbn-2 cells, we found that live bacteria, including E. coli, Salmonella typhimurium, Erwinia carotovora, and Pseudomonas aeruginosa, prevented LPS from inducing antimicrobial peptide genes, while Micrococcus luteus and Streptococcus equi did not. The inhibitory effect was seen at bacterial levels from 20 per mbn-2 cell, while antimicrobial peptides were induced at lower bacterial concentrations (≤2 bacteria per cell) also in the absence of added LPS. Gel shift experiment suggests that the inhibitory effect is upstream or at the level of the activation of the transcription factor Relish, a member of the NF-κB/Rel family. The bacteria have to be in physical contact with the cells, but not phagocytosed, to prevent LPS induction. Interestingly, the inhibiting mechanism is, at least for E. coli, independent of the type III secretion system, indicating that the inhibitory mechanism is unrelated to the one earlier described for YopJ from Yersinia.


Developmental and Comparative Immunology | 2009

The N-terminal half of the Drosophila Rel/NF-κB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes.

Magda-Lena Wiklund; Stefanie Steinert; Anna Junell; Dan Hultmark; Svenja Stöven

The Rel/NF-kappaB transcription factor Relish is a major regulator of the antimicrobial response in Drosophila. Upon immune challenge, Relish is cleaved to generate two fragments, the DNA-binding transcription factor REL-68 and the IkappaB-like REL-49. Using transgenic fly strains we show here that overexpression of REL-68 separately from REL-49 is sufficient to activate strong constitutive transcription of the Diptericin gene, but little constitutive or inducible transcription of Attacin and Cecropin, two other Relish target genes. Their transcription may therefore require additional modifications of Relish. However, phosphorylation of the conserved serine residue S431 is not involved in such modifications. This is unlike p65 and Dorsal, which are modulated by phosphorylation at their homologous site. In contrast to other IkappaB proteins, overexpression of REL-49 had no inhibitory effect on Relish-dependent transcription. Instead, we propose that the C-terminal IkappaB-like domain executes a scaffolding and recruiting function for full activation of Relish.


PLOS ONE | 2012

Signatures of T cells as correlates of immunity to Francisella tularensis

Kjell Eneslätt; Monica Normark; Rafael Björk; Cecilia Rietz; Carl Zingmark; Lawrence A. Wolfraim; Svenja Stöven; Anders Sjöstedt

Tularemia or vaccination with the live vaccine strain (LVS) of Francisella tularensis confers long-lived cell-mediated immunity. We hypothesized that this immunity depends on polyfunctional memory T cells, i.e., CD4+ and/or CD8+ T cells with the capability to simultaneously express several functional markers. Multiparametric flow cytometry, measurement of secreted cytokines, and analysis of lymphocyte proliferation were used to characterize in vitro recall responses of peripheral blood mononuclear cells (PBMC) to killed F. tularensis antigens from the LVS or Schu S4 strains. PBMC responses were compared between individuals who had contracted tularemia, had been vaccinated, or had not been exposed to F. tularensis (naïve). Significant differences were detected between either of the immune donor groups and naïve individuals for secreted levels of IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, MCP-1, and MIP-1β. Expression of IFN-γ, MIP-1β, and CD107a by CD4+CD45RO+ or CD8+CD45RO+ T cells correlated to antigen concentrations. In particular, IFN-γ and MIP-1β strongly discriminated between immune and naïve individuals. Only one cytokine, IL-6, discriminated between the two groups of immune individuals. Notably, IL-2- or TNF-α-secretion was low. Our results identify functional signatures of T cells that may serve as correlates of immunity and protection against F. tularensis.

Collaboration


Dive into the Svenja Stöven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neal S. Silverman

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge