Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svetlana Earnest is active.

Publication


Featured researches published by Svetlana Earnest.


Cell Research | 2008

The roles of MAPKs in disease

Michael C. Lawrence; Arif Jivan; Chunli Shao; Lingling Duan; Daryl L. Goad; Elma Zaganjor; Jihan K. Osborne; Kathleen McGlynn; Steve Stippec; Svetlana Earnest; Wei Chen; Melanie H. Cobb

MAP kinases transduce signals that are involved in a multitude of cellular pathways and functions in response to a variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases ranging from cancer to inflammatory disease to obesity and diabetes. In many cell types, the MAPKs ERK1/2 are linked to cell proliferation. ERK1/2 are thought to play a role in some cancers, because mutations in Ras and B-Raf, which can activate the ERK1/2 cascade, are found in many human tumors. Abnormal ERK1/2 signaling has also been found in polycystic kidney disease, and serious developmental disorders such as cardio-facio-cutaneous syndrome arise from mutations in components of the ERK1/2 cascade. ERK1/2 are essential in well-differentiated cells and have been linked to long-term potentiation in neurons and in maintenance of epithelial polarity. Additionally, ERK1/2 are important for insulin gene transcription in pancreatic beta cells, which produce insulin in response to increases in circulating glucose to permit efficient glucose utilization and storage in the organism. Nutrients and hormones that induce or repress insulin secretion activate and/or inhibit ERK1/2 in a manner that reflects the secretory demand on beta cells. Disturbances in this and other regulatory pathways may result in the contribution of ERK1/2 to the etiology of certain human disorders.


The EMBO Journal | 2007

TAO kinases mediate activation of p38 in response to DNA damage

Malavika Raman; Svetlana Earnest; Kai Zhang; Yingming Zhao; Melanie H. Cobb

Thousand and one amino acid (TAO) kinases are Ste20p‐related MAP kinase kinase kinases (MAP3Ks) that activate p38 MAPK. Here we show that the TAO kinases mediate the activation of p38 in response to various genotoxic stimuli. TAO kinases are activated acutely by ionizing radiation, ultraviolet radiation, and hydroxyurea. Full‐length and truncated fragments of dominant negative TAOs inhibit the activation of p38 by DNA damage. Inhibition of TAO expression by siRNA also decreases p38 activation by these agents. Cells in which TAO kinases have been knocked down are less capable of engaging the DNA damage‐induced G2/M checkpoint and display increased sensitivity to IR. The DNA damage kinase ataxia telangiectasia mutated (ATM) phosphorylates TAOs in vitro; radiation induces phosphorylation of TAO on a consensus site for phosphorylation by the ATM protein kinase in cells; and TAO and p38 activation is compromised in cells from a patient with ataxia telangiectasia that lack ATM. These findings indicate that TAO kinases are regulators of p38‐mediated responses to DNA damage and are intermediates in the activation of p38 by ATM.


Journal of Biological Chemistry | 2010

Serum and Glucocorticoid-induced Kinase (SGK) 1 and the Epithelial Sodium Channel Are Regulated by Multiple with No Lysine (WNK) Family Members

Charles J. Heise; Bing E. Xu; Staci L. Deaton; Seung Kuy Cha; Chih Jen Cheng; Svetlana Earnest; Samarpita Sengupta; Yu Chi Juang; Steve Stippec; Yingda Xu; Yingming Zhao; Chou Long Huang; Melanie H. Cobb

The four WNK (with no lysine (K)) protein kinases affect ion balance and contain an unusual protein kinase domain due to the unique placement of the active site lysine. Mutations in two WNKs cause a heritable form of ion imbalance culminating in hypertension. WNK1 activates the serum- and glucocorticoid-induced protein kinase SGK1; the mechanism is noncatalytic. SGK1 increases membrane expression of the epithelial sodium channel (ENaC) and sodium reabsorption via phosphorylation and sequestering of the E3 ubiquitin ligase neural precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2), which otherwise promotes ENaC endocytosis. Questions remain about the intrinsic abilities of WNK family members to regulate this pathway. We find that expression of the N termini of all four WNKs results in modest to strong activation of SGK1. In reconstitution experiments in the same cell line all four WNKs also increase sodium current blocked by the ENaC inhibitor amiloride. The N termini of the WNKs also have the capacity to interact with SGK1. More detailed analysis of activation by WNK4 suggests mechanisms in common with WNK1. Further evidence for the importance of WNK1 in this process comes from the ability of Nedd4-2 to bind to WNK1 and the finding that endogenous SGK1 has reduced activity if WNK1 is knocked down by small interfering RNA.


FEBS Letters | 1996

Phosphorylation of dynamin by ERK2 inhibits the dynamin-microtubule interaction

Svetlana Earnest; Andrei Khokhlatchev; Joseph P. Albanesi; Barbara Barylko

In the present study we show that purified bovine brain dynamin can be phosphorylated by MAP kinase, ERK2, with a stoichiometry of 1 mol phosphate/mol dynamin. The phosphorylated serine residue is located within the C‐terminal 10 kDa of dynamin. Dynamin I phosphorylated by ERK2 can be specifically dephosphorylated by calcineurin but not by protein phosphatase 2A (PP2A). Phosphorylation of dynamin by ERK2 weakens the binding of dynamin to microtubules and inhibits dynamins microtubule‐activated GTPase activity. Stimulation of GTPase activity by either Grb2 or phospholipids was not affected by ERK2 phosphorylation, suggesting that the binding sites for Grb2 and phospholipids do not overlap with that for microtubules.


Molecular and Cellular Biology | 2006

Cyclic AMP selectively uncouples mitogen-activated protein kinase cascades from activating signals

Gray Pearson; Svetlana Earnest; Melanie H. Cobb

ABSTRACT Cells integrate signals to select the appropriate response from an array of possible outcomes. Signal integration causes the reorganization of signaling pathways by undescribed events. To analyze the molecular changes in signaling pathways that elicit different responses, we focused on the interaction between cyclic AMP (cAMP) and growth factors. We show that the activation of extracellular signal-regulated kinase 5 (ERK5), but not ERK1/2, by growth factors is disrupted by cAMP through cAMP-dependent protein kinase (PKA). Activation of MEKK2, a mitogen-activated protein (MAP) kinase kinase kinase upstream of ERK5 that is required for growth factor activation of ERK5, is also disrupted by PKA. Transcription of c-Jun is induced by ERK5, and like ERK5, c-Jun induction is also blocked by cAMP. Transcription from the serum response element, like activation of ERK1/2, is not blocked by cAMP. Collectively, these results support a model in which cAMP shapes the growth factor-induced cellular response through PKA-dependent uncoupling of selected MAP kinase cascades from activating signals.


Journal of Biological Chemistry | 2009

Radial Spoke Protein 3 Is a Mammalian Protein Kinase A-anchoring Protein That Binds ERK1/2

Arif Jivan; Svetlana Earnest; Yu-Chi C Juang; Melanie H. Cobb

Initially identified in Chlamydomonas, RSP3 (radial spoke protein 3) is 1 of more than 20 identified radial spoke structural components of motile cilia and is required for axonemal sliding and flagellar motility. The mammalian orthologs for this and other radial spoke proteins, however, remain to be characterized. We found mammalian RSP3 to bind to the MAPK ERK2 through a yeast two-hybrid screen designed to identify interacting proteins that have a higher affinity for the phosphorylated, active form of the protein kinase. Consistent with the screening result, the human homolog, RSPH3, interacts with and is a substrate for ERK1/2. Moreover, RSPH3 is a protein kinase A-anchoring protein (AKAP) that scaffolds the cAMP-dependent protein kinase holoenzyme. The binding of RSPH3 to the regulatory subunits of cAMP-dependent protein kinase, RIIα and RIIβ, is regulated by ERK1/2 activity and phosphorylation. Here we describe an ERK1/2-interacting AKAP and suggest a mechanism by which cAMP-dependent protein kinase-AKAP binding can be modulated by the activity of other enzymes.


Journal of Biological Chemistry | 2012

Interactions with WNK (with no lysine) family members regulate oxidative stress response 1 and ion co-transporter activity.

Samarpita Sengupta; Szu Wei Tu; Kyle Wedin; Svetlana Earnest; Steve Stippec; Katherine Luby-Phelps; Melanie H. Cobb

Background: WNK1 binds OSR1 via RFXV motifs and is on intracellular puncta. Results: C-terminal WNK1 segments bind OSR1 and localize to puncta like endogenous WNK1; changes in tonicity decrease WNK1 mobility. Conclusion: Complex interplay of protein-protein interactions, changes in tonicity, and localization control the WNK-OSR1 cascade. Significance: WNK function varies because of family member and splice form expression, protein interactions, and localization. Two of the four WNK (with no lysine (K)) protein kinases are associated with a heritable form of ion imbalance culminating in hypertension. WNK1 affects ion transport in part through activation of the closely related Ste20 family protein kinases oxidative stress-responsive 1 (OSR1) and STE20/SPS1-related proline-, alanine-rich kinase (SPAK). Once activated by WNK1, OSR1 and SPAK phosphorylate and stimulate the sodium, potassium, two chloride co-transporters, NKCC1 and NKCC2, and also affect other related ion co-transporters. We find that WNK1 and OSR1 co-localize on cytoplasmic puncta in HeLa and other cell types. We show that the C-terminal region of WNK1 including a coiled coil is sufficient to localize the fragment in a manner similar to the full-length protein, but some other fragments lacking this region are mislocalized. Photobleaching experiments indicate that both hypertonic and hypotonic conditions reduce the mobility of GFP-WNK1 in cells. The four WNK family members can phosphorylate the activation loop of OSR1 to increase its activity with similar kinetic constants. C-terminal fragments of WNK1 that contain three RFXV interaction motifs can bind OSR1, block activation of OSR1 by sorbitol, and prevent the OSR1-induced enhancement of ion co-transporter activity in cells, further supporting the conclusion that association with WNK1 is required for OSR1 activation and function at least in some contexts. C-terminal WNK1 fragments can be phosphorylated by OSR1, suggesting that OSR1 catalyzes feedback phosphorylation of WNK1.


ACS Chemical Biology | 2016

Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in β-Cells

Michael A. Kalwat; Zhimin Huang; Chonlarat Wichaidit; Kathleen McGlynn; Svetlana Earnest; Claudia Savoia; Elhadji M. Dioum; Jay W. Schneider; Michele R. Hutchison; Melanie H. Cobb

Novel strategies are needed to modulate β-cell differentiation and function as potential β-cell replacement or restorative therapies for diabetes. We previously demonstrated that small molecules based on the isoxazole scaffold drive neuroendocrine phenotypes. The nature of the effects of isoxazole compounds on β-cells was incompletely defined. We find that isoxazole induces genes that support neuroendocrine and β-cell phenotypes and suppresses genes important for proliferation. Isoxazole alters β-cell metabolites and protects glucose-responsive signaling pathways under lipotoxic conditions. Finally, we show that isoxazole improves glycemia in a mouse model of β-cell regeneration. Isoxazole is a prime candidate to alter cell fate in different contexts.


Journal of Biological Chemistry | 2016

Amino Acids Regulate mTORC1 by an Obligate Two-Step Mechanism

Julia Dyachok; Svetlana Earnest; Erica N. Iturraran; Melanie H. Cobb; Elliott M. Ross

The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals

Samarpita Sengupta; Svetlana Earnest; Steve Stippec; Xiaofeng Guo; David C. Trudgian; Hamid Mirzaei; Melanie H. Cobb

Significance With no lysine [K] (WNK) protein kinases are sensitive to changes in osmotic stress. Through the downstream protein kinases oxidative stress-responsive 1 (OSR1) and STE20/SPS1-related proline-, alanine-rich kinase, WNKs regulate a family of ion cotransporters and thereby modulate a range of processes including cell volume homeostasis, blood pressure, hearing, and kidney function. We found that a major phosphoinositide 3-kinase target pathway, the mammalian target of rapamycin complex 2, also phosphorylates OSR1, coordinating with WNK1 to enhance OSR1 and ion cotransporter function. The Ste20 family protein kinases oxidative stress-responsive 1 (OSR1) and the STE20/SPS1-related proline-, alanine-rich kinase directly regulate the solute carrier 12 family of cation-chloride cotransporters and thereby modulate a range of processes including cell volume homeostasis, blood pressure, hearing, and kidney function. OSR1 and STE20/SPS1-related proline-, alanine-rich kinase are activated by with no lysine [K] protein kinases that phosphorylate the essential activation loop regulatory site on these kinases. We found that inhibition of phosphoinositide 3-kinase (PI3K) reduced OSR1 activation by osmotic stress. Inhibition of the PI3K target pathway, the mammalian target of rapamycin complex 2 (mTORC2), by depletion of Sin1, one of its components, decreased activation of OSR1 by sorbitol and reduced activity of the OSR1 substrate, the sodium, potassium, two chloride cotransporter, in HeLa cells. OSR1 activity was also reduced with a pharmacological inhibitor of mTOR. mTORC2 phosphorylated OSR1 on S339 in vitro, and mutation of this residue eliminated OSR1 phosphorylation by mTORC2. Thus, we identify a previously unrecognized connection of the PI3K pathway through mTORC2 to a Ste20 protein kinase and ion homeostasis.

Collaboration


Dive into the Svetlana Earnest's collaboration.

Top Co-Authors

Avatar

Melanie H. Cobb

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steve Stippec

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samarpita Sengupta

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arif Jivan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Barbara Barylko

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Albanesi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kathleen McGlynn

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Chi Juang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bing E. Xu

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge