Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Svetlana Komarova is active.

Publication


Featured researches published by Svetlana Komarova.


Molecular Cancer Therapeutics | 2006

Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses

Svetlana Komarova; Yosuke Kawakami; Mariam A. Stoff-Khalili; David T. Curiel; Larisa Pereboeva

Natural and genetically modified oncolytic viruses have been systematically tested as anticancer therapeutics. Among this group, conditionally replicative adenoviruses have been developed for a broad range of tumors with a rapid transition to clinical settings. Unfortunately, clinical trials have shown limited antitumor efficacy partly due to insufficient viral delivery to tumor sites. We investigated the possibility of using mesenchymal progenitor cells (MPC) as virus carriers based on the documented tumor-homing abilities of this cell population. We confirmed preferential tumor homing of MPCs in an animal model of ovarian carcinoma and evaluated the capacity of MPCs to be loaded with oncolytic adenoviruses. We showed that MPCs were efficiently infected with an adenovirus genetically modified for coxsackie and adenovirus receptor–independent infection (Ad5/3), which replicated in the cell carriers. MPCs loaded with Ad5/3 caused total cell killing when cocultured with a cancer cell line. In an animal model of ovarian cancer, MPC-based delivery of the Ad5/3 increased the survival of tumor-bearing mice compared with direct viral injection. Further, tumor imaging confirmed a decrease in tumor burden in animals treated with oncolytic virus delivered by MPC carriers compared with the direct injection of the adenovirus. These data show that MPCs can serve as intermediate carriers for replicative adenoviruses and suggest that the natural homing properties of specific cell types can be used for targeted delivery of these virions. [Mol Cancer Ther 2006;5(3):755–66]


Stem Cells | 2003

Approaches to Utilize Mesenchymal Progenitor Cells as Cellular Vehicles

Larisa Pereboeva; Svetlana Komarova; G. Mikheeva; Victor Krasnykh; David T. Curiel

Mammalian cells represent a novel vector approach for gene delivery that overcomes major drawbacks of viral and nonviral vectors and couples cell therapy with gene delivery. A variety of cell types have been tested in this regard, confirming that the ideal cellular vector system for ex vivo gene therapy has to comply with stringent criteria and is yet to be found. Several properties of mesenchymal progenitor cells (MPCs), such as easy access and simple isolation and propagation procedures, make these cells attractive candidates as cellular vehicles. In the current work, we evaluated the potential utility of MPCs as cellular vectors with the intent to use them in the cancer therapy context. When conventional adenoviral (Ad) vectors were used for MPC transduction, the highest transduction efficiency of MPCs was 40%. We demonstrated that Ad primary‐binding receptors were poorly expressed on MPCs, while the secondary Ad receptors and integrins presented in sufficient amounts. By employing Ad vectors with incorporated integrin‐binding motifs (Ad5lucRGD), MPC transduction was augmented tenfold, achieving efficient genetic loading of MPCs with reporter and anticancer genes. MPCs expressing thymidine kinase were able to exert a bystander killing effect on the cancer cell line SKOV3ip1 in vitro. In addition, we found that MPCs were able to support Ad replication, and thus can be used as cell vectors to deliver oncolytic viruses. Our results show that MPCs can foster expression of suicide genes or support replication of adenoviruses as potential anticancer therapeutic payloads. These findings are consistent with the concept that MPCs possess key properties that ensure their employment as cellular vehicles and can be used to deliver either therapeutic genes or viruses to tumor sites.


Journal of Ovarian Research | 2010

Targeting of mesenchymal stem cells to ovarian tumors via an artificial receptor

Svetlana Komarova; Justin C. Roth; Ronald D. Alvarez; David T. Curiel; Larisa Pereboeva

BackgroundMesenchymal Progenitor/Stem Cells (MSC) respond to homing cues providing an important mechanism to deliver therapeutics to sites of injury and tumors. This property has been confirmed by many investigators, however, the efficiency of tumor homing needs to be improved for effective therapeutic delivery. We investigated the feasibility of enhancing MSC tumor targeting by expressing an artificial tumor-binding receptor on the MSC surface.MethodsHuman MSC expressing an artificial receptor that binds to erbB2, a tumor cell marker, were obtained by transduction with genetically modified adenoviral vectors encoding an artificial receptor (MSC-AR). MSC-AR properties were tested in vitro in cell binding assays and in vivo using two model systems: transient transgenic mice that express human erbB2 in the lungs and ovarian xenograft tumor model. The levels of luciferase-labeled MSCs in erbB2-expressing targeted sites were evaluated by measuring luciferase activity using luciferase assay and imaging.ResultsThe expression of AR enhanced binding of MSC-AR to erbB2-expressing cells in vitro, compared to unmodified MSCs. Furthermore, we have tested the properties of erbB2-targeted MSCs in vivo and demonstrated an increased retention of MSC-AR in lungs expressing erbB2. We have also confirmed increased numbers of erbB2-targeted MSCs in ovarian tumors, compared to unmodified MSC. The kinetic of tumor targeting by ip injected MSC was also investigated.ConclusionThese data demonstrate that targeting abilities of MSCs can be enhanced via introduction of artificial receptors. The application of this strategy for tumor cell-based delivery could increase a number of cell carriers in tumors and enhance efficacy of cell-based therapy.


Gene Therapy | 2007

Targeting EGFR with metabolically biotinylated fiber-mosaic adenovirus

Larisa Pereboeva; Svetlana Komarova; Justin C. Roth; Selvarangan Ponnazhagan; David T. Curiel

Adenovirus (Ad)-based vectors are useful gene delivery vehicles for a variety of applications. Despite their attractive properties, many in vivo applications require modulation of the viral tropism. Targeting approaches applied to adenoviral vectors included genetic modification of the viral capsid, controlled expression of the transgene and combinatorial approaches that combine two or more targeting elements in single vectors. Most of these studies confirmed successful retargeting in cell cultures, however, in vivo gains of targeted adenoviral vectors have not been widely demonstrated. We have developed a combinatorial retargeting approach utilizing metabolically biotinylated Ad, where the biotin acceptor peptide was incorporated in one of the fibers in a dual fiber viral particle resulting in metabolically biotinylated fiber-mosaic Ad (mBfMAd). We have utilized this vector in complex with epidermal growth factor (EGF)-Streptavidin to retarget fiber-mosaic virus to EGF receptor (EGFR) expressing cells in vitro and confirmed an increased infectivity of the retargeting complex. Most importantly, the utility of this strategy was demonstrated in vivo in two distinct animal models. In both models tested, retargeted mBfMAd demonstrated an increased ratio of gene expression in target tissues compared to the liver expression profile. Thus, metabolically biotinylated fiber-mosaic virus in combination with appropriate adapters can be successfully exploited for adenoviral retargeting strategies.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury.

Ahmed Lazrak; Judy Creighton; Zhihong Yu; Svetlana Komarova; Stephen F. Doran; Saurabh Aggarwal; Charles W. Emala; Vandy P. Stober; Carol S. Trempus; Stavros Garantziotis; Sadis Matalon

Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR.


Free Radical Biology and Medicine | 2015

Upregulation of autophagy decreases chlorine-induced mitochondrial injury and lung inflammation

Asta Jurkuvenaite; Gloria A. Benavides; Svetlana Komarova; Stephen F. Doran; Michelle S. Johnson; Saurabh Aggarwal; Jianhua Zhang; Victor M. Darley-Usmar; Sadis Matalon

The mechanisms of toxicity during exposure of the airways to chlorinated biomolecules generated during the course of inflammation and to chlorine (Cl2) gas are poorly understood. We hypothesized that lung epithelial cell mitochondria are damaged by Cl2 exposure and activation of autophagy mitigates this injury. To address this, NCI-H441 (human lung adenocarcinoma epithelial) cells were exposed to Cl2 (100 ppm/15 min) and bioenergetics were assessed. One hour after Cl2, cellular bioenergetic function and mitochondrial membrane potential were decreased. These changes were associated with increased MitoSOX signal, and treatment with the mitochondrial redox modulator MitoQ attenuated these bioenergetic defects. At 6h postexposure, there was significant increase in autophagy, which was associated with an improvement of mitochondrial function. Pretreatment of H441 cells with trehalose (an autophagy activator) improved bioenergetic function, whereas 3-methyladenine (an autophagy inhibitor) resulted in increased bioenergetic dysfunction 1h after Cl2 exposure. These data indicate that Cl2 induces bioenergetic dysfunction, and autophagy plays a protective role in vitro. Addition of trehalose (2 vol%) to the drinking water of C57BL/6 mice for 6 weeks, but not 1 week, before Cl2 (400 ppm/30 min) decreased white blood cells in the bronchoalveolar lavage fluid at 6h after Cl2 by 70%. Acute administration of trehalose delivered through inhalation 24 and 1h before the exposure decreased alveolar permeability but not cell infiltration. These data indicate that Cl2 induces bioenergetic dysfunction associated with lung inflammation and suggests that autophagy plays a protective role.


Virology Journal | 2010

Evaluation of adenovirus capsid labeling versus transgene expression

Jing Li; Aiman Fatima; Svetlana Komarova; Hideyo Ugai; Priyanka Uprety; Justin C. Roth; Minghui Wang; Robert A. Oster; David T. Curiel; Qiana L. Matthews

Adenoviral vectors have been utilized for a variety of gene therapy applications. Our group has incorporated bioluminescent, fluorographic reporters, and/or suicide genes within the adenovirus genome for analytical and/or therapeutic purposes. These molecules have also been incorporated as capsid components. Recognizing that incorporations at either locale yield potential advantages and disadvantages, our report evaluates the benefits of transgene incorporation versus capsid incorporation. To this end, we have genetically incorporated firefly luciferase within the early region 3 or at minor capsid protein IX and compared vector functionality by means of reporter readout.


Cancer Research | 2018

Activation of the receptor tyrosine kinase AXL regulates the immune microenvironment in glioblastoma

Hirokazu Sadahiro; Kyung-Don Kang; Justin Tyler Gibson; Mutsuko Minata; Hai Yu; Junfeng Shi; Rishi Raj Chhipa; Zhihong Chen; Songjian Lu; Yannick Simoni; Takuya Furuta; Hemragul Sabit; Suojun Zhang; Soniya Bastola; Shinobu Yamaguchi; Hebaallah Alsheikh; Svetlana Komarova; Jun Wang; Sung-Hak Kim; Dolores Hambardzumyan; Xinghua Lu; Evan W. Newell; Biplab Dasgupta; Mitsutoshi Nakada; L. James Lee; Burt Nabors; Lyse A. Norian; Ichiro Nakano

Glioblastoma (GBM) is a lethal disease with no effective therapies available. We previously observed upregulation of the TAM (Tyro-3, Axl, and Mer) receptor tyrosine kinase family member AXL in mesenchymal GBM and showed that knockdown of AXL induced apoptosis of mesenchymal, but not proneural, glioma sphere cultures (GSC). In this study, we report that BGB324, a novel small molecule inhibitor of AXL, prolongs the survival of immunocompromised mice bearing GSC-derived mesenchymal GBM-like tumors. We show that protein S (PROS1), a known ligand of other TAM receptors, was secreted by tumor-associated macrophages/microglia and subsequently physically associated with and activated AXL in mesenchymal GSC. PROS1-driven phosphorylation of AXL (pAXL) induced NFκB activation in mesenchymal GSC, which was inhibited by BGB324 treatment. We also found that treatment of GSC-derived mouse GBM tumors with nivolumab, a blocking antibody against the immune checkpoint protein PD-1, increased intratumoral macrophages/microglia and activation of AXL. Combinatorial therapy with nivolumab plus BGB324 effectively prolonged the survival of mice bearing GBM tumors. Clinically, expression of AXL or PROS1 was associated with poor prognosis for patients with GBM. Our results suggest that the PROS1-AXL pathway regulates intrinsic mesenchymal signaling and the extrinsic immune microenvironment, contributing to the growth of aggressive GBM tumors.Significance: These findings suggest that development of combination treatments of AXL and immune checkpoint inhibitors may provide benefit to patients with GBM. Cancer Res; 78(11); 3002-13. ©2018 AACR.


Cancer Cell | 2018

Apoptotic Cell-Derived Extracellular Vesicles Promote Malignancy of Glioblastoma Via Intercellular Transfer of Splicing Factors

Marat S. Pavlyukov; Hai Yu; Soniya Bastola; Mutsuko Minata; Victoria O. Shender; Yeri Lee; Suojun Zhang; Jia Wang; Svetlana Komarova; Jun Wang; Shinobu Yamaguchi; Heba Allah Alsheikh; Junfeng Shi; Dongquan Chen; Ahmed Mohyeldin; Sung-Hak Kim; Yong Jae Shin; Ksenia Anufrieva; Evgeniy G. Evtushenko; Nadezhda V. Antipova; Georgij P. Arapidi; Vadim M. Govorun; Nikolay B. Pestov; Mikhail I. Shakhparonov; L. James Lee; Do-Hyun Nam; Ichiro Nakano

Aggressive cancers such as glioblastoma (GBM) contain intermingled apoptotic cells adjacent to proliferating tumor cells. Nonetheless, intercellular signaling between apoptotic and surviving cancer cells remain elusive. In this study, we demonstrate that apoptotic GBM cells paradoxically promote proliferation and therapy resistance of surviving tumor cells by secreting apoptotic extracellular vesicles (apoEVs) enriched with various components of spliceosomes. apoEVs alter RNA splicing in recipient cells, thereby promoting their therapy resistance and aggressive migratory phenotype. Mechanistically, we identified RBM11 as a representative splicing factor that is upregulated in tumors after therapy and shed in extracellular vesicles upon induction of apoptosis. Once internalized in recipient cells, exogenous RBM11 switches splicing of MDM4 and Cyclin D1 toward the expression of more oncogenic isoforms.


Oncotarget | 2018

A small molecule regulator of tissue transglutaminase conformation inhibits the malignant phenotype of cancer cells

William P. Katt; Nicolas J. Blobel; Svetlana Komarova; Marc A. Antonyak; Ichiro Nakano; Richard A. Cerione

The protein crosslinking enzyme tissue transglutaminase (tTG) is an acyltransferase which catalyzes transamidation reactions between two proteins, or between a protein and a polyamine. It is frequently overexpressed in several different types of human cancer cells, where it has been shown to contribute to their growth, survival, and invasiveness. tTG is capable of adopting two distinct conformational states: a protein crosslinking active (“open”) state, and a GTP-bound, crosslinking inactive (“closed”) state. We have previously shown that the ectopic expression of mutant forms of tTG, which constitutively adopt the open conformation, are toxic to cells. This raises the possibility that strategies directed toward causing tTG to maintain an open state could potentially provide a therapeutic benefit for cancers in which tTG is highly expressed. Here, we report the identification of a small molecule, TTGM 5826, which stabilizes the open conformation of tTG. Treatment of breast and brain cancer cell lines, as well as glioma stem cells, with this molecule broadly inhibits their transformed phenotypes. Thus, TTGM 5826 represents the lead compound for a new class of small molecules that promote the toxicity of cancer cells by stabilizing the open state of tTG.

Collaboration


Dive into the Svetlana Komarova's collaboration.

Top Co-Authors

Avatar

David T. Curiel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Larisa Pereboeva

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ichiro Nakano

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Justin C. Roth

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mutsuko Minata

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sadis Matalon

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shinobu Yamaguchi

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Soniya Bastola

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Stephen F. Doran

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge