Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Swapan K. Das is active.

Publication


Featured researches published by Swapan K. Das.


The Journal of Clinical Endocrinology and Metabolism | 2008

Endoplasmic Reticulum Stress Markers Are Associated with Obesity in Nondiabetic Subjects

Neeraj K. Sharma; Swapan K. Das; Ashis K. Mondal; Oksana G. Hackney; Winston S. Chu; Philip A. Kern; Neda Rasouli; Horace J. Spencer; Aiwei Yao-Borengasser; Steven C. Elbein

OBJECTIVE Adipocyte and hepatocyte endoplasmic reticulum (ER) stress response is activated in dietary and genetic models of obesity in mice. We hypothesized that ER stress was also activated and associated with reduced insulin sensitivity (SI) in human obesity. RESEARCH DESIGN AND METHODS We recruited 78 healthy, nondiabetic individuals over a spectrum of body mass index (BMI) who underwent oral and iv glucose tolerance tests, and fasting sc adipose and muscle biopsies. We tested expression of 18 genes and levels of total and phosphorylated eukaryotic initiation factor 2alpha, c-jun, and c-Jun N-terminal kinase 1 in adipose tissue. We compared gene expression in stromal vascular and adipocyte fractions in paired samples from 22 individuals, and tested clustering on gene and protein markers. RESULTS Adipocyte expression of most markers of ER stress, including chaperones downstream of activating transcription factor 6, were significantly correlated with BMI and percent fat (r>0.5; P<0.00001). Phosphorylation of eukaryotic initiation factor 2alpha but not of c-Jun N-terminal kinase 1 or c-jun was increased with obesity. ER stress response (as elsewhere) was also increased with obesity in a second set of 86 individuals, and in the combined sample (n=161). The increase was only partially attributable to the stromal vascular fraction and macrophage infiltration. ER stress markers were only modestly correlated with S(I). Clustering algorithms supported ER stress activation with high BMI but not low SI. CONCLUSIONS Multiple markers of ER stress are activated in human adipose with obesity, particularly for protective chaperones downstream of activating transcription factor 6alpha.


Diabetes | 2011

Global Gene Expression Profiles of Subcutaneous Adipose and Muscle From Glucose-Tolerant, Insulin-Sensitive, and Insulin-Resistant Individuals Matched for BMI

Steven C. Elbein; Philip A. Kern; Neda Rasouli; Aiwei Yao-Borengasser; Neeraj K. Sharma; Swapan K. Das

OBJECTIVE To determine altered gene expression profiles in subcutaneous adipose and skeletal muscle from nondiabetic, insulin-resistant individuals compared with insulin-sensitive individuals matched for BMI. RESEARCH DESIGN AND METHODS A total of 62 nondiabetic individuals were chosen for extremes of insulin sensitivity (31 insulin-resistant and 31 insulin-sensitive subjects; 40 were European American and 22 were African American) and matched for age and obesity measures. Global gene expression profiles were determined and compared between ethnic groups and between insulin-resistant and insulin-sensitive participants individually and using gene-set enrichment analysis. RESULTS African American and European American subjects differed in 58 muscle and 140 adipose genes, including many inflammatory and metabolically important genes. Peroxisome proliferator–activated receptor γ cofactor 1A (PPARGC1A) was 1.75-fold reduced with insulin resistance in muscle, and fatty acid and lipid metabolism and oxidoreductase activity also were downregulated. Unexpected categories included ubiquitination, citrullination, and protein degradation. In adipose, highly represented categories included lipid and fatty acid metabolism, insulin action, and cell-cycle regulation. Inflammatory genes were increased in European American subjects and were among the top Kyoto Encyclopedia of Genes and Genomes pathways on gene-set enrichment analysis. FADS1, VEGFA, PTPN3, KLF15, PER3, STEAP4, and AGTR1 were among genes expressed differentially in both adipose and muscle. CONCLUSIONS Adipose tissue gene expression showed more differences between insulin-resistant versus insulin-sensitive groups than the expression of genes in muscle. We confirm the role of PPARGC1A in muscle and show some support for inflammation in adipose from European American subjects but find prominent roles for lipid metabolism in insulin sensitivity independent of obesity in both tissues.


Diabetes | 2009

Genome-Wide Linkage and Admixture Mapping of Type 2 Diabetes in African American Families From the American Diabetes Association GENNID (Genetics of NIDDM) Study Cohort

Steven C. Elbein; Swapan K. Das; D. Michael Hallman; Craig L. Hanis; Sandra J. Hasstedt

OBJECTIVE—We used a single nucleotide polymorphism (SNP) map in a large cohort of 580 African American families to identify regions linked to type 2 diabetes, age of type 2 diabetes diagnosis, and BMI. RESEARCH DESIGN AND METHODS—After removing outliers and problematic samples, we conducted linkage analysis using 5,914 SNPs in 1,344 individuals from 530 families. Linkage analysis was conducted using variance components for type 2 diabetes, age of type 2 diabetes diagnosis, and BMI and nonparametric linkage analyses. Ordered subset analyses were conducted ranking on age of type 2 diabetes diagnosis, BMI, waist circumference, waist-to-hip ratio, and amount of European admixture. Admixture mapping was conducted using 4,486 markers not in linkage disequilibrium. RESULTS—The strongest signal for type 2 diabetes (logarithm of odds [LOD] 4.53) was a broad peak on chromosome 2, with weaker linkage to age of type 2 diabetes diagnosis (LOD 1.82). Type 2 diabetes and age of type 2 diabetes diagnosis were linked to chromosome 13p (3–22 cM; LOD 2.42 and 2.46, respectively). Age of type 2 diabetes diagnosis was linked to 18p (66 cM; LOD 2.96). We replicated previous reports on chromosome 7p (79 cM; LOD 2.93). Ordered subset analysis did not overlap with linkage of unselected families. The best admixture score was on chromosome 12 (90 cM; P = 0.0003). CONCLUSIONS—The linkage regions on chromosomes 7 (27–78 cM) and 18p overlap prior reports, whereas regions on 2p and 13p linkage are novel. Among potential candidate genes implicated are TCF7L1, VAMP5, VAMP8, CDK8, INSIG2, IPF1, PAX8, IL18R1, members of the IL1 and IL1 receptor families, and MAP4K4. These studies provide a complementary approach to genome-wide association scans to identify causative genes for African American diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2008

Effect of pioglitazone treatment on endoplasmic reticulum stress response in human adipose and in palmitate-induced stress in human liver and adipose cell lines

Swapan K. Das; Winston S. Chu; Ashis K. Mondal; Neeraj K. Sharma; Philip A. Kern; Neda Rasouli; Steven C. Elbein

Obesity and elevated cytokine secretion result in a chronic inflammatory state and may cause the insulin resistance observed in type 2 diabetes. Recent studies suggest a key role for endoplasmic reticulum stress in hepatocytes and adipocytes from obese mice, resulting in reduced insulin sensitivity. To address the hypothesis that thiazolidinediones, which improve peripheral insulin sensitivity, act in part by reducing the endoplasmic reticulum stress response, we tested subcutaneous adipose tissue from 20 obese volunteers treated with pioglitazone for 10 wk. We also experimentally induced endoplasmic reticulum stress using palmitate, tunicamycin, and thapsigargin in the human HepG2 liver cell line with or without pioglitazone pretreatment. We quantified endoplasmic reticulum stress response by measuring both gene expression and phosphorylation. Pioglitazone significantly improved insulin sensitivity in human volunteers (P = 0.002) but did not alter markers of endoplasmic reticulum stress. Differences in pre- and posttreatment endoplasmic reticulum stress levels were not correlated with changes in insulin sensitivity or body mass index. In vitro, palmitate, thapsigargin, and tunicamycin but not oleate induced endoplasmic reticulum stress in HepG2 cells, including increased transcripts CHOP, ERN1, GADD34, and PERK, and increased XBP1 splicing along with phosphorylation of eukaryotic initiation factor eIF2alpha, JNK1, and c-jun. Although patterns of endoplasmic reticulum stress response differed among palmitate, tunicamycin, and thapsigargin, pioglitazone pretreatment had no significant effect on any measure of endoplasmic reticulum stress, regardless of the inducer. Together, our data suggest that improved insulin sensitivity with pioglitazone is not mediated by a reduction in endoplasmic reticulum stress.


The Journal of Clinical Endocrinology and Metabolism | 2011

An Integrative Genomics Approach Identifies Activation of Thioredoxin/Thioredoxin Reductase-1-Mediated Oxidative Stress Defense Pathway and Inhibition of Angiogenesis in Obese Nondiabetic Human Subjects

Swapan K. Das; Neeraj K. Sharma; Sandra J. Hasstedt; Ashis K. Mondal; Lijun Ma; Kurt A. Langberg; Steven C. Elbein

CONTEXT Obesity is a complex disease that involves both genetic and environmental perturbations to gene networks in adipose tissue and is proposed as a trigger for metabolic sequelae. OBJECTIVE We hypothesized that expression of adipose tissue transcripts in gene networks for adaptive response would correlate with the percent fat mass (PFAT) in healthy nondiabetic subjects to maintain metabolic equilibrium and would overlap with genes modulated in response to elevated fatty acid. DESIGN, SETTINGS, AND PATIENTS Genome-wide transcript profiles were determined in sc adipose tissue of 136 nondiabetics and in palmitate-induced cells. Genotype information and gene expression data in nondiabetic subjects were integrated to characterize the function of 41 obesity-associated polymorphisms. RESULTS Genes involved in inflammation-immune response, endoplasmic reticulum stress, and cell-extracellular matrix interactions were significantly correlated with PFAT. The NRF2 (nuclear factor erythroid 2-related factor-2)-mediated oxidative stress response pathway was strongly enriched among genes correlated with PFAT in adipose and also emerged as the most enriched pathway among genes differentially expressed by palmitate in vitro. Thioredoxin reductase-1 (TXNRD1) was the most strongly correlated gene (ρ = 0.65). Genes coregulated with TXNRD1 expression indicated a significant interaction network of genes involved in thioredoxin-mediated oxidative stress defense mechanisms and angiogenesis. Pro- and antiangiogenic factors were negatively and positively correlated, respectively, with obesity. Eight obesity genome-wide association study single-nucleotide polymorphisms (SNP) were associated with expression of 10 local transcripts. SNP rs6861681 was the strongest cis-eQTL (expression quantitative trait loci) for CPEB4 (P = 3.02 × 10⁻⁹). CONCLUSIONS Our study suggests a novel interaction of up-regulated TXN-TXNRD1 system-mediated oxidative stress defense mechanisms and down-regulated angiogenesis pathways as an adaptive response in obese nondiabetic subjects. A subset of obesity-associated SNP regulated expression of transcripts as cis-eQTL.


Diabetes | 2007

Activating Transcription Factor 6 (ATF6) Sequence Polymorphisms in Type 2 Diabetes and Pre-Diabetic Traits

Winston S. Chu; Swapan K. Das; Hua Wang; Juliana C.N. Chan; Panos Deloukas; Philippe Froguel; Leslie J. Baier; Weiping Jia; Mark McCarthy; Maggie C.Y. Ng; Coleen M. Damcott; Alan R. Shuldiner; Eleftheria Zeggini; Steven C. Elbein

Activating transcription factor 6 (ATF6) is located within the region of linkage to type 2 diabetes on chromosome 1q21-q23 and is a key activator of the endoplasmic reticulum stress response. We evaluated 78 single nucleotide polymorphisms (SNPs) spanning >213 kb in 95 people, from which we selected 64 SNPs for evaluation in 191 Caucasian case subjects from Utah and between 165 and 188 control subjects. Six SNPs showed nominal associations with type 2 diabetes (P = 0.001–0.04), including the nonsynonymous SNP rs1058405 (M67V) in exon 3 and rs11579627 in the 3′ flanking region. Only rs1159627 remained significant on permutation testing. The associations were not replicated in 353 African-American case subjects and 182 control subjects, nor were ATF6 SNPs associated with altered insulin secretion or insulin sensitivity in nondiabetic Caucasian individuals. No association with type 2 diabetes was found in a subset of 44 SNPs in Caucasian (n = 2,099), Pima Indian (n = 293), and Chinese (n = 287) samples. Allelic expression imbalance was found in transformed lymphocyte cDNA for 3′ untranslated region variants, thus suggesting cis-acting regulatory variants. ATF6 does not appear to play a major role in type 2 diabetes, but further work is required to identify the cause of the allelic expression imbalance.


Nucleic Acids Research | 2012

Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals

Aradhita Baral; Pankaj Kumar; Rashi Halder; Prithvi Mani; Vinod Kumar Yadav; Ankita Singh; Swapan K. Das; Shantanu Chowdhury

Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14 500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter—remarkable difference in promoter activity in the ‘quadruplex-destabilized’ versus ‘quadruplex-intact’ promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals.


Metabolic Syndrome and Related Disorders | 2012

Effect of Endoplasmic Reticulum Stress on Inflammation and Adiponectin Regulation in Human Adipocytes

Ashis K. Mondal; Swapan K. Das; Vijayalakshmi Varma; Greg T. Nolen; Robert E. McGehee; Steven C. Elbein; Jeanne Y. Wei; Gouri Ranganathan

The endoplasmic reticulum (ER) of adipocytes plays a major role in the assembly and secretion of adipokines. The levels of serum adiponectin, secreted by adipocytes, are decreased in insulin resistance, diabetes, and obesity. The role of ER stress in downregulating adiponectin levels has been demonstrated in mouse models of obesity. Studies examining human adipose tissue have indicated that there is an increase in the ER stress transcript HSPA5 with increased body mass index (BMI). However, it is not established whether ER stress results in changes in adiponectin levels or multimerization in human adipocytes. We examined whether the induction of ER stress using tunicamycin, thapsigargin, or palmitate alters the messenger RNA (mRNA) and protein expression of adiponectin and the mRNA expression of chaperones ERP44 and ERO1 in adult-derived human adipocyte stem (ADHAS) cells. ER stress was measured using key indicators of ER stress-HSPA5, ERN1, CHOP, and GADD34, as well as changes in eIF2α phosphorylation. Because ER stress is suggested to be the proximal cause of inflammation in adipocytes, we further examined the change in inflammatory status by quantitating the change in Iκβ-α protein following the induction of ER stress. Our studies indicate that: (1) ER stress markers were increased to a higher degree using tunicamycin or thapsigargin compared to palmitate; (2) ER stress significantly decreased adiponectin mRNA in response to tunicamycin and thapsigargin, but palmitate did not decrease adiponectin mRNA levels. In all three instances, the induction of ER stress was accompanied by a decrease in adiponectin protein as well as adiponectin multimerization. All three inducers of ER stress increased tumor necrosis factor-α (TNF-α) mRNA and decreased Iκβ-α protein in adipocytes. The data suggest that ER stress modifies adiponectin secretion and induces inflammation in ADHAS cells.


Cell Reports | 2017

The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue

Rebecca C. Schugar; Diana M. Shih; Manya Warrier; Robert N. Helsley; Amy C. Burrows; Daniel Ferguson; Amanda L. Brown; Anthony D. Gromovsky; Markus Heine; Arunachal Chatterjee; Lin Li; Xinmin S. Li; Zeneng Wang; Belinda Willard; Yong Hong Meng; Hanjun Kim; Nam Che; Calvin Pan; Richard G. Lee; Rosanne M. Crooke; Mark J. Graham; Richard E. Morton; Carl D. Langefeld; Swapan K. Das; Lawrence L. Rudel; Nizar N. Zein; Arthur J. McCullough; Srinivasan Dasarathy; W.H. Wilson Tang; Bernadette O. Erokwu

Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.


American Journal of Human Genetics | 2012

Genetic Risk Factors for Type 2 Diabetes: A Trans-Regulatory Genetic Architecture?

Steven C. Elbein; Eric R. Gamazon; Swapan K. Das; Neda Rasouli; Philip A. Kern; Nancy J. Cox

To date, 68 loci have been associated with type 2 diabetes (T2D) or glucose homeostasis traits. We report here the results of experiments aimed at functionally characterizing the SNPs replicated for T2D and glucose traits. We sought to determine whether these loci were associated with transcript levels in adipose, muscle, liver, lymphocytes, and pancreatic β-cells. We found an excess of trans, rather than cis, associations among these SNPs in comparison to what was expected in adipose and muscle. Among transcripts differentially expressed (FDR < 0.05) between muscle or adipose cells of insulin-sensitive individuals and those of insulin-resistant individuals (matched on BMI), trans-regulated transcripts, in contrast to the cis-regulated ones, were enriched. The paucity of cis associations with transcripts was confirmed in a study of liver transcriptome and was further supported by an analysis of the most detailed transcriptome map of pancreatic β-cells. Relative to location- and allele-frequency-matched random SNPs, both the 68 loci and top T2D-associated SNPs from two large-scale genome-wide studies were enriched for trans eQTLs in adipose and muscle but not in lymphocytes. Our study suggests that T2D SNPs have broad-reaching and tissue-specific effects that often extend beyond local transcripts and raises the question of whether patterns of cis or trans transcript regulation are a key feature of the architecture of complex traits.

Collaboration


Dive into the Swapan K. Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winston S. Chu

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Wang

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Ma

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar

Neda Rasouli

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge