Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Syd Barthorpe is active.

Publication


Featured researches published by Syd Barthorpe.


Nature | 2007

Patterns of somatic mutation in human cancer genomes

Christopher Greenman; Philip Stephens; Raffaella Smith; Gillian L. Dalgliesh; Chris Hunter; Graham R. Bignell; Helen Davies; Jon Teague; Adam Butler; Claire Stevens; Sarah Edkins; Sarah O’Meara; Imre Vastrik; Esther Schmidt; Tim Avis; Syd Barthorpe; Gurpreet Bhamra; Gemma Buck; Bhudipa Choudhury; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kris Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jon Hinton; Andy Jenkinson; David Jones

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be ‘passengers’ that do not contribute to oncogenesis. However, there was evidence for ‘driver’ mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Nature | 2012

Systematic identification of genomic markers of drug sensitivity in cancer cells

Mathew J. Garnett; Elena J. Edelman; Sonja J. Heidorn; Christopher Greenman; Anahita Dastur; King Wai Lau; Patricia Greninger; I. Richard Thompson; Xi Luo; Jorge Soares; Qingsong Liu; Francesco Iorio; Didier Surdez; L Leon Chen; Randy J. Milano; Graham R. Bignell; Ah Ting Tam; Helen Davies; Jesse A. Stevenson; Syd Barthorpe; Stephen R. Lutz; Fiona Kogera; Karl Lawrence; Anne McLaren-Douglas; Xeni Mitropoulos; Tatiana Mironenko; Helen Thi; Laura Richardson; Wenjun Zhou; Frances Jewitt

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines—which represent much of the tissue-type and genetic diversity of human cancers—with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing’s sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.


Nature | 2010

Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes

Gillian L. Dalgliesh; Kyle A. Furge; Christopher Greenman; Lina Chen; Graham R. Bignell; Adam Butler; Helen Davies; Sarah Edkins; Claire Hardy; Calli Latimer; Jon Teague; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Simon A. Forbes; Mingming Jia; David Jones; Henry Knott; Chai Yin Kok; King Wai Lau; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maguire; Kirsten McLay; Andrew Menzies; Tatiana Mironenko

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification—SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase—as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Nature Genetics | 2009

Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer

Gijs van Haaften; Gillian L. Dalgliesh; Helen Davies; Lina Chen; Graham R. Bignell; Christopher Greenman; Sarah Edkins; Claire Hardy; Sarah O'Meara; Jon Teague; Adam Butler; Jonathan Hinton; Calli Latimer; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Jennifer Cole; Simon A. Forbes; Mingming Jia; David Jones; Chai Yin Kok; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maquire; Kirsten McLay; Andrew Menzies

Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.


Nature Genetics | 2009

A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

Patrick Tarpey; Raffaella Smith; Erin Pleasance; Annabel Whibley; Sarah Edkins; Claire Hardy; Sarah O'Meara; Calli Latimer; Ed Dicks; Andrew Menzies; Phil Stephens; Matt Blow; Christopher Greenman; Yali Xue; Chris Tyler-Smith; Deborah Thompson; Kristian Gray; Jenny Andrews; Syd Barthorpe; Gemma Buck; Jennifer Cole; Rebecca Dunmore; David Jones; Mark Maddison; Tatiana Mironenko; Rachel Turner; Kelly Turrell; Jennifer Varian; Sofie West; Sara Widaa

Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.


Molecular Cancer Therapeutics | 2006

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set

Ogechi N. Ikediobi; Helen Davies; Graham R. Bignell; Sarah Edkins; Claire Stevens; Sarah O'Meara; Thomas Santarius; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathan Hinton; Chris Hunter; Andy Jenkinson; David Jones; Vivienne Kosmidou; Richard Lugg; Andrew Menzies; Tatiana Mironenko; Adrian Parker; Janet Perry

The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens. [Mol Cancer Ther 2006;5(11):2606–12]


Cancer Research | 2006

A Hypermutation Phenotype and Somatic MSH6 Mutations in Recurrent Human Malignant Gliomas after Alkylator Chemotherapy

Chris Hunter; Raffaella Smith; Daniel P. Cahill; Philip Stephens; Claire Stevens; Jon Teague; Christopher Greenman; Sarah Edkins; Graham R. Bignell; Helen Davies; Sarah O'Meara; Adrian Parker; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Matthew Gorton; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathon Hinton; Andy Jenkinson; David Jones; Vivienne Kosmidou

Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.


Nature Genetics | 2008

X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment.

Leanne M. Dibbens; Patrick Tarpey; Kim Hynes; Marta A. Bayly; Ingrid E. Scheffer; Raffaella Smith; Jamee M. Bomar; Edwina Sutton; Lucianne Vandeleur; Cheryl Shoubridge; Sarah Edkins; Samantha J. Turner; Claire Stevens; Sarah O'Meara; Calli Tofts; Syd Barthorpe; Gemma Buck; Jennifer Cole; Kelly Halliday; David Jones; Rebecca Lee; Mark Madison; Tatiana Mironenko; Jennifer Varian; Sofie West; Sara Widaa; Paul Wray; J Teague; Ed Dicks; Adam Butler

Epilepsy and mental retardation limited to females (EFMR) is a disorder with an X-linked mode of inheritance and an unusual expression pattern. Disorders arising from mutations on the X chromosome are typically characterized by affected males and unaffected carrier females. In contrast, EFMR spares transmitting males and affects only carrier females. Aided by systematic resequencing of 737 X chromosome genes, we identified different protocadherin 19 (PCDH19) gene mutations in seven families with EFMR. Five mutations resulted in the introduction of a premature termination codon. Study of two of these demonstrated nonsense-mediated decay of PCDH19 mRNA. The two missense mutations were predicted to affect adhesiveness of PCDH19 through impaired calcium binding. PCDH19 is expressed in developing brains of human and mouse and is the first member of the cadherin superfamily to be directly implicated in epilepsy or mental retardation.


Cell | 2016

A Landscape of Pharmacogenomic Interactions in Cancer

Francesco Iorio; Theo Knijnenburg; Daniel J. Vis; Graham R. Bignell; Michael P. Menden; Michael Schubert; Nanne Aben; Emanuel Gonçalves; Syd Barthorpe; Howard Lightfoot; Thomas Cokelaer; Patricia Greninger; Ewald van Dyk; Han Chang; Heshani de Silva; Holger Heyn; Xianming Deng; Regina K. Egan; Qingsong Liu; Tatiana Mironenko; Xeni Mitropoulos; Laura Richardson; Jinhua Wang; Tinghu Zhang; Sebastian Moran; Sergi Sayols; Maryam Soleimani; David Tamborero; Nuria Lopez-Bigas; Petra Ross-Macdonald

Summary Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Nature Genetics | 2007

Mutations in UPF3B , a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation

Patrick Tarpey; F. Lucy Raymond; Lam Son Nguyen; Jayson Rodriguez; Anna Hackett; Lucianne Vandeleur; Raffaella Smith; Cheryl Shoubridge; Sarah Edkins; Claire Stevens; Sarah O'Meara; Calli Tofts; Syd Barthorpe; Gemma Buck; Jennifer Cole; Kelly Halliday; Katy Hills; David Jones; Tatiana Mironenko; Janet Perry; Jennifer Varian; Sofie West; Sara Widaa; J Teague; Ed Dicks; Adam Butler; Andrew Menzies; David C. Richardson; Andrew M. Jenkinson; Rebecca Shepherd

Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.

Collaboration


Dive into the Syd Barthorpe's collaboration.

Top Co-Authors

Avatar

David Jones

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Gemma Buck

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Sarah Edkins

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Adam Butler

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer Cole

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ed Dicks

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Claire Stevens

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Kelly Halliday

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Tatiana Mironenko

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Graham R. Bignell

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge