Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sydney Chapman is active.

Publication


Featured researches published by Sydney Chapman.


Nature | 2013

A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34

Dominik A. Riechers; C. M. Bradford; D. L. Clements; C. D. Dowell; I. Perez-Fournon; R. J. Ivison; C. Bridge; A. Conley; Hai Fu; J. D. Vieira; J. L. Wardlow; Jae Calanog; A. Cooray; P. D. Hurley; R. Neri; J. Kamenetzky; James E. Aguirre; B. Altieri; V. Arumugam; Dominic J. Benford; M. Béthermin; J. J. Bock; D. Burgarella; A. Cabrera-Lavers; Sydney Chapman; P. Cox; James Dunlop; L. Earle; D. Farrah; P. Ferrero

Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts—that is, increased rates of star formation—in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ∼5 (refs 2–4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A ‘maximum starburst’ converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.


web science | 2007

The SCUBA HAlf Degree Extragalactic Survey – III. Identification of radio and mid-infrared counterparts to submillimetre galaxies

R. J. Ivison; T. R. Greve; James Dunlop; J. A. Peacock; E. Egami; Ian Smail; E. Ibar; E. van Kampen; I. Aretxaga; T. Babbedge; A. D. Biggs; A. W. Blain; Sydney Chapman; D. L. Clements; K. Coppin; D. Farrah; M. Halpern; David H. Hughes; M. J. Jarvis; T. Jenness; J. R. Jones; A. M. J. Mortier; Seb Oliver; Casey Papovich; P. G. Pérez-González; Alexandra Pope; Steve Rawlings; G. H. Rieke; M. Rowan-Robinson; Richard S. Savage

Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample – source counts and 2D clustering – to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour–colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2–6 arcsec, ~15–50/ sin i kpc at z∼ 2, consistent with early bursts seen in merger simulations.


Monthly Notices of the Royal Astronomical Society | 2011

The LABOCA survey of the Extended Chandra Deep Field-South: a photometric redshift survey of submillimetre galaxies

J. L. Wardlow; Ian Smail; K. E. K. Coppin; D. M. Alexander; W. N. Brandt; A. L. R. Danielson; B. Luo; A. M. Swinbank; Frederick M. Walter; A. Weiss; Y. Q. Xue; Stefano Zibetti; Frank Bertoldi; A. D. Biggs; Sydney Chapman; H. Dannerbauer; James Dunlop; Eric Gawiser; R. J. Ivison; Kirsten Kraiberg Knudsen; A. Kovács; Cedric G. Lacey; K. M. Menten; N. Padilla; Hans-Walter Rix; P. van der Werf

We derive photometric redshifts from 17-band optical to mid-infrared photometry of 78 robust radio, 24-mu m and Spitzer IRAC counterparts to 72 of the 126 submillimetre galaxies (SMGs) selected at 870 mu m by LABOCA observations in the Extended Chandra Deep Field-South (ECDF-S). We test the photometric redshifts of the SMGs against the extensive archival spectroscopy in the ECDF-S. The median photometric redshift of identified SMGs is z = 2.2 +/- 0.1, the standard deviation is sigma(z) = 0.9 and we identify 11 (similar to 15 per cent) high-redshift (z >= 3) SMGs. A statistical analysis of sources in the error circles of unidentified SMGs identifies a population of possible counterparts with a redshift distribution peaking at z = 2.5 +/- 0.2, which likely comprises similar to 60 per cent of the unidentified SMGs. This confirms that the bulk of the undetected SMGs are coeval with those detected in the radio/mid-infrared. We conclude that at most similar to 15 per cent of all the SMGs are below the flux limits of our IRAC observations and thus may lie at z greater than or similar to 3 and hence at most similar to 30 per cent of all SMGs have z greater than or similar to 3. We estimate that the full S(870 mu m) > 4mJy SMG population has a median redshift of 2.5 +/- 0.5. In contrast to previous suggestions, we find no significant correlation between submillimetre flux and redshift. The median stellar mass of the SMGs derived from spectral energy distribution fitting is (9.1 +/- 0.5) x 10(10)M(circle dot) although we caution that the uncertainty in the star formation histories results in a factor of similar to 5 uncertainty in these stellarmasses. Using a single temperature modified blackbody fit with beta = 1.5, the median characteristic dust temperature of SMGs is 37.4 +/- 1.4K. The infrared luminosity function shows that SMGs at z = 2-3 typically have higher far-infrared luminosities and luminosity density than those at z = 1-2. This is mirrored in the evolution of the star formation rate density (SFRD) for SMGs which peaks at z similar to 2. The maximum contribution of bright SMGs to the global SFRD (similar to 5 per cent for SMGs with S(870 mu m) greater than or similar to 4mJy or similar to 50 per cent extrapolated to SMGs with S(870 mu m) > 1mJy) also occurs at z similar to 2.


Monthly Notices of the Royal Astronomical Society | 2013

An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: high-resolution 870 μm source counts

A. Karim; A. M. Swinbank; J. A. Hodge; Ian Smail; F. Walter; A. D. Biggs; J. M. Simpson; A. L. R. Danielson; D. M. Alexander; Frank Bertoldi; C. De Breuck; Sydney Chapman; K. E. K. Coppin; H. Dannerbauer; A. C. Edge; T. R. Greve; R. J. Ivison; Kirsten Kraiberg Knudsen; K. M. Menten; E. Schinnerer; J. L. Wardlow; A. Weiß; P. van der Werf

We report the first counts of faint submillimetre galaxies (SMGs) in the 870-mu m band derived from arcsecond-resolution observations with the Atacama Large Millimeter Array (ALMA). We have used ALMA to map a sample of 122 870-mu m-selected submillimetre sources drawn from the 0 degrees.5x0 degrees.5 the Large Apex BOlometer CAmera (LABOCA) Extended Chandra Deep Field South submillimetre survey (LESS). These ALMA maps have an average depth of sigma 870(mu m) similar to 0.4 mJy, some approximately three times deeper than the original LABOCA survey and critically the angular resolution is more than an order of magnitude higher, FWHM of similar to 1.5 arcsec compared to similar to 19 arcsec for the LABOCA discovery map. This combination of sensitivity and resolution allows us to precisely pinpoint the SMGs contributing to the submillimetre sources from the LABOCA map, free from the effects of confusion. We show that our ALMA-derived SMG counts broadly agree with the submillimetre source counts from previous, lower resolution single-dish surveys, demonstrating that the bulk of the submillimetre sources are not caused by blending of unresolved SMGs. The difficulty which well-constrained theoretical models have in reproducing the high surface densities of SMGs, thus remains. However, our observations do show that all of the very brightest sources in the LESS sample, S-870 (mu m) greater than or similar to 12 mJy, comprise emission from multiple, fainter SMGs, each with 870-mu m fluxes of less than or similar to 9 mJy. This implies a natural limit to the star formation rate in SMGs of less than or similar to 10(3) M-circle dot yr(-1), which in turn suggests that the space densities of z > 1 galaxies with gas masses in excess of similar to 5 x 10(10) M-circle dot is <10(-5) Mpc(-3). We also discuss the influence of this blending on the identification and characterization of the SMG counterparts to these bright submillimetre sources and suggest that it may be responsible for previous claims that they lie at higher redshifts than fainter SMGs.


The Astrophysical Journal | 2013

ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

A. Weiß; C. De Breuck; D. P. Marrone; J. D. Vieira; James E. Aguirre; K. A. Aird; M. Aravena; M. L. N. Ashby; Matthew B. Bayliss; B. A. Benson; M. Béthermin; A. D. Biggs; L. E. Bleem; J. J. Bock; M. Bothwell; C. M. Bradford; M. Brodwin; J. E. Carlstrom; C. L. Chang; Sydney Chapman; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; Thomas P. Downes; C. D. Fassnacht; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; T. R. Greve

Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S_(1.4mm) > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz) 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.


Monthly Notices of the Royal Astronomical Society | 2012

The LABOCA Survey of the Extended Chandra Deep Field South : Clustering of submillimetre galaxies

R. C. Hickox; J. L. Wardlow; Ian Smail; Adam D. Myers; D. M. Alexander; A. M. Swinbank; A. L. R. Danielson; John P. Stott; Sydney Chapman; K. E. K. Coppin; James Dunlop; Eric Gawiser; D. Lutz; P. van der Werf; A. Weiß

We present a measurement of the spatial clustering of submillimetre galaxies (SMGs) at z= 1-3. Using data from the 870μm Large APEX Bolometer Camera (LABOCA) submillimetre survey of the Extended Chandra Deep Field-South, we employ a novel technique to measure the cross-correlation between SMGs and galaxies, accounting for the full probability distributions for photometric redshifts of the galaxies. From the observed projected two-point cross-correlation function we derive the linear bias and characteristic dark matter halo masses for the SMGs. We detect clustering in the cross-correlation between SMGs and galaxies at the >4σ level. Accounting for the clustering of galaxies from their autocorrelation function, we estimate an autocorrelation length for SMGs of r o = 7.7 -2.3 +1.8 h -1 Mpc assuming a power-law slope γ= 1.8, and derive a corresponding dark matter halo mass of log(M halo[h -1M ⊙]) = 12.8 -0.5 +0.3. Based on the evolution of dark matter haloes derived from simulations, we show that that the z= 0 descendants of SMGs are typically massive (~2-3L *) elliptical galaxies residing in moderate- to high-mass groups (log(M halo[h -1M ⊙]) = 13.3 -0.5 +0.3). From the observed clustering we estimate an SMG lifetime of ~100Myr, consistent with lifetimes derived from gas consumption times and star formation time-scales, although with considerable uncertainties. The clustering of SMGs at z~ 2 is consistent with measurements for optically selected quasi-stellar objects (QSOs), supporting evolutionary scenarios in which powerful starbursts and QSOs occur in the same systems. Given that SMGs reside in haloes of characteristic mass ~6 × 10 12h -1M ⊙, we demonstrate that the redshift distribution of SMGs can be described remarkably well by the combination of two effects: the cosmological growth of structure and the evolution of the molecular gas fraction in galaxies. We conclude that the powerful starbursts in SMGs likely represent a short-lived but universal phase in massive galaxy evolution, associated with the transition between cold gas-rich, star-forming galaxies and passively evolving systems.


web science | 2008

WEIGHING THE BLACK HOLES IN z ≈ 2 SUBMILLIMETER-EMITTING GALAXIES HOSTING ACTIVE GALACTIC NUCLEI

D. M. Alexander; W. N. Brandt; Ian Smail; A. M. Swinbank; F. E. Bauer; A. W. Blain; Sydney Chapman; K. E. K. Coppin; R. J. Ivison; Karin Menendez-Delmestre

We place direct observational constraints on the black-hole masses (MBH) of the cosmologically important z ≈ 2 submillimeter-emitting galaxy (SMG; f850µm > ∼ 4 mJy) population, and use measured host-galaxy masses to explore their evolutionary status. We employ the well-established virial black-hole mass estimator to “weigh” the black holes of a sample of z ≈ 2 SMGs which exhibit broad Hα or Hβ emission. We find that the average black-hole mass and Eddington ratio (η = Lbol/LEdd) of the lower-luminosity broad-line SMGs (LX ≈ 10 44 erg s −1 ) are log(MBH/M⊙) ≈ 8.0 and η ≈ 0.2, respectively; by comparison, X-ray luminous broadline SMGs (LX ≈ 10 45 erg s −1 ) have log(MBH/M⊙) ≈ 8.4 and η ≈ 0.6. The lower-luminosity broad-line SMGs lie in the same location of the LX‐LFIR plane as more typical SMGs hosting X-ray obscured active galactic nuclei and may be intrinsically similar systems, but orientat ed so that the rest-frame optical nucleus is visible. Under this hypothesis, we conclude that SMGs host black holes with log(MBH/M⊙) ≈ 7.8; we find supporting evidence from observations of local ultra-luminous infrared galaxies. Combining these black-hole mass constraints with measured host-galaxy masses, we find that the b lack holes in SMGs are > ∼ 3 times smaller than those found in comparably massive normal galaxies in the local Universe, albeit with considerable uncertainty, and > ∼ 10 times smaller than those predicted for z ≈ 2 luminous quasars and radio galaxies. These results imply that the growth of the black hole lags that of the host galaxy in SMGs, in stark contrast with that previously suggested for radio galaxies and luminous quasars at z ≈ 2. On the basis of current host-galaxy mass constraints, we show that SMGs and their descendants cannot lie significan tly above the locally defined MBH‐MGAL relationship. We argue that the black holes in the z ≈ 0 descendents of SMGs will have log(MBH/M⊙) ≈ 8.6, indicating that they only need to grow by a factor of ≈ 6 by the present day. We show that this amount of black-hole growth can be achieved within current estimates for the submm-bright lifetime of SMGs, provided that the black holes can grow at rates close to the Eddington limit. Subject headings:galaxies: active — galaxies: evolution — infrared: galaxies — X-rays:galaxies


Monthly Notices of the Royal Astronomical Society | 2009

A submillimetre galaxy at z=4.76 in the LABOCA survey of the Extended Chandra Deep Field South

K. E. K. Coppin; Ian Smail; D. M. Alexander; A. Weiss; F. Walter; A. M. Swinbank; T. R. Greve; A. Kovács; C. De Breuck; M. Dickinson; E. Ibar; R. J. Ivison; Naveen A. Reddy; Hyron Spinrad; D. Stern; W. N. Brandt; Sydney Chapman; H. Dannerbauer; P. G. van Dokkum; James Dunlop; D. T. Frayer; Eric Gawiser; J. E. Geach; Minh T. Huynh; Kirsten Kraiberg Knudsen; Anton M. Koekemoer; B. D. Lehmer; K. M. Menten; Casey Papovich; H.-W. Rix

We report on the identification of the highest redshift submillimetre-selected source currently known LESS J033229.4−275619. This source was detected in the Large Apex Bolometer Camera (LABOCA) Extended Chandra Deep Field-South (ECDF-S) Submillimetre Survey (LESS), a sensitive 870-μm survey (σ_(870 μm)∼ 1.2 mJy) of the full 30 × 30 arcmin_2 ECDF-S with the LABOCA on the Atacama Pathfinder Experiment telescope. The submillimetre emission is identified with a radio counterpart for which optical spectroscopy provides a redshift of z= 4.76 . We show that the bolometric emission is dominated by a starburst with a star formation rate of ∼1000 M_⊙ yr^(−1), although we also identify a moderate luminosity active galactic nucleus (AGN) in this galaxy. Thus it has characteristics similar to those of z∼ 2 submillimetre galaxies (SMGs), with a mix of starburst and obscured AGN signatures. This demonstrates that ultraluminous starburst activity is not just restricted to the hosts of the most luminous (and hence rare) quasi-stellar objects at z∼ 5 , but was also occurring in less extreme galaxies at a time when the Universe was less than 10 per cent of its current age. Assuming that we are seeing the major phase of star formation in this galaxy, then we demonstrate that it would be identified as a luminous distant red galaxy at z∼ 3 and that the current estimate of the space density of z > 4 SMGs is only sufficient to produce ≳10 per cent of the luminous red galaxy population at these early times. However, this leaves open the possibility that some of these galaxies formed through less intense, but more extended star formation events. If the progenitors of all of the luminous red galaxies at z∼ 3 go through an ultraluminous starburst at z≳ 4 then the required volume density of z > 4 SMGs will exceed that predicted by current galaxy formation models by more than an order of magnitude.


Physical Review Letters | 2014

Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR experiment

Peter A. R. Ade; Y. Akiba; A. E. Anthony; K. Arnold; M. Atlas; D. Barron; D. Boettger; J. Borrill; Sydney Chapman; Y. Chinone; M. Dobbs; T. Elleflot; J. Errard; G. Fabbian; Chang Feng; D. Flanigan; A. Gilbert; William F. Grainger; N. W. Halverson; M. Hasegawa; K. Hattori; M. Hazumi; W. L. Holzapfel; Y. Hori; J. Howard; P. Hyland; Y. Inoue; G. Jaehnig; A. H. Jaffe; Brian Keating

Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.


Journal of Atmospheric and Solar-Terrestrial Physics | 1957

The nondeviative absorption of high-frequency radio waves in auroral latitudes

Sydney Chapman; C.Gordon Little

Abstract In auroral latitudes the nondeviative absorption of high-frequency radio waves is much more irregular, and often much stronger, than in subauroral latitudes. It is greater and more frequent by day than by night; this is the converse of the daily variation of magnetic activity. The electrons that produce the absorption in subauroral latitudes are mainly caused by solar ultra-violet light; in auroral latitudes, often the major source is bombardment of the atmosphere by solar gas. According to J. A. Van Allens new interpretation of the soft radiation observed by himself and his colleagues in auroral latitudes, down to 50 km, a small minority of the primary bombarding particles generate X rays, which penetrate further than the particles themselves. It is here suggested that the layer ionized by these X rays is an important factor in the daytime radio absorption. Also, as D. R. Bates has pointed out, Lyman-alpha radiation will be generated by the auroral protons; ionization of nitric oxide molecules by this radiation may also contribute appreciably to the absorption. The same processes of ionization will occur likewise at night, and often still more strongly; however, loss of the electrons to form negative ions by attachment is countered by photodetachment during the day, but not at night. Very tentative tables are given, based on these ideas, indicating ionospheric conditions consistent with greater daytime absorption than at night, even when the nighttime bombardment is twenty times more intense than that by day. The corresponding absorption relaxation times, and daily variation of magnetic disturbance, will be examined in a later note.

Collaboration


Dive into the Sydney Chapman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. J. Ivison

Aiken Technical College

View shared research outputs
Top Co-Authors

Avatar

A. W. Blain

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Farrah

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge