Syed Haider
Ontario Institute for Cancer Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Syed Haider.
Database | 2011
Rhoda Kinsella; Andreas Kähäri; Syed Haider; Jorge Zamora; Glenn Proctor; Giulietta Spudich; Jeff Almeida-King; Daniel M. Staines; Paul S. Derwent; Arnaud Kerhornou; Paul Kersey; Paul Flicek
For a number of years the BioMart data warehousing system has proven to be a valuable resource for scientists seeking a fast and versatile means of accessing the growing volume of genomic data provided by the Ensembl project. The launch of the Ensembl Genomes project in 2009 complemented the Ensembl project by utilizing the same visualization, interactive and programming tools to provide users with a means for accessing genome data from a further five domains: protists, bacteria, metazoa, plants and fungi. The Ensembl and Ensembl Genomes BioMarts provide a point of access to the high-quality gene annotation, variation data, functional and regulatory annotation and evolutionary relationships from genomes spanning the taxonomic space. This article aims to give a comprehensive overview of the Ensembl and Ensembl Genomes BioMarts as well as some useful examples and a description of current data content and future objectives. Database URLs: http://www.ensembl.org/biomart/martview/; http://metazoa.ensembl.org/biomart/martview/; http://plants.ensembl.org/biomart/martview/; http://protists.ensembl.org/biomart/martview/; http://fungi.ensembl.org/biomart/martview/; http://bacteria.ensembl.org/biomart/martview/
Nucleic Acids Research | 2009
Syed Haider; Benoit Ballester; Damian Smedley; Junjun Zhang; Peter A. Rice; Arek Kasprzyk
BioMart Central Portal (www.biomart.org) offers a one-stop shop solution to access a wide array of biological databases. These include major biomolecular sequence, pathway and annotation databases such as Ensembl, Uniprot, Reactome, HGNC, Wormbase and PRIDE; for a complete list, visit, http://www.biomart.org/biomart/martview. Moreover, the web server features seamless data federation making cross querying of these data sources in a user friendly and unified way. The web server not only provides access through a web interface (MartView), it also supports programmatic access through a Perl API as well as RESTful and SOAP oriented web services. The website is free and open to all users and there is no login requirement.
Nucleic Acids Research | 2010
Paul Flicek; Bronwen Aken; Benoit Ballester; Kathryn Beal; Eugene Bragin; Simon Brent; Yuan Chen; Peter Clapham; Guy Coates; Susan Fairley; Stephen Fitzgerald; Julio Fernandez-Banet; Leo Gordon; Stefan Gräf; Syed Haider; Martin Hammond; Kerstin Howe; Andrew M. Jenkinson; Nathan Johnson; Andreas Kähäri; Damian Keefe; Stephen Keenan; Rhoda Kinsella; Felix Kokocinski; Gautier Koscielny; Eugene Kulesha; Daniel Lawson; Ian Longden; Tim Massingham; William M. McLaren
Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure.
Database | 2011
Junjun Zhang; Joachim Baran; Anthony Cros; Jonathan M. Guberman; Syed Haider; Jack Hsu; Yong Liang; Elena Rivkin; Jianxin Wang; Brett Whitty; Marie Wong-Erasmus; Long Yao; Arek Kasprzyk
The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal. Database URL: http://dcc.icgc.org
Circulation | 2011
Mehregan Movassagh; Mun-Kit Choy; David A. Knowles; Lina Cordeddu; Syed Haider; Thomas A. Down; Lee Siggens; Ana Vujic; Ilenia Simeoni; Chris Penkett; Martin Goddard; Pietro Liò; Martin R. Bennett; Roger Foo
Background— The epigenome refers to marks on the genome, including DNA methylation and histone modifications, that regulate the expression of underlying genes. A consistent profile of gene expression changes in end-stage cardiomyopathy led us to hypothesize that distinct global patterns of the epigenome may also exist. Methods and Results— We constructed genome-wide maps of DNA methylation and histone-3 lysine-36 trimethylation (H3K36me3) enrichment for cardiomyopathic and normal human hearts. More than 506 Mb sequences per library were generated by high-throughput sequencing, allowing us to assign methylation scores to ≈28 million CG dinucleotides in the human genome. DNA methylation was significantly different in promoter CpG islands, intragenic CpG islands, gene bodies, and H3K36me3-enriched regions of the genome. DNA methylation differences were present in promoters of upregulated genes but not downregulated genes. H3K36me3 enrichment itself was also significantly different in coding regions of the genome. Specifically, abundance of RNA transcripts encoded by the DUX4 locus correlated to differential DNA methylation and H3K36me3 enrichment. In vitro, Dux gene expression was responsive to a specific inhibitor of DNA methyltransferase, and Dux siRNA knockdown led to reduced cell viability. Conclusions— Distinct epigenomic patterns exist in important DNA elements of the cardiac genome in human end-stage cardiomyopathy. The epigenome may control the expression of local or distal genes with critical functions in myocardial stress response. If epigenomic patterns track with disease progression, assays for the epigenome may be useful for assessing prognosis in heart failure. Further studies are needed to determine whether and how the epigenome contributes to the development of cardiomyopathy.
Database | 2011
Jonathan M. Guberman; J. Ai; Olivier Arnaiz; Joachim Baran; Andrew Blake; Richard Baldock; Claude Chelala; David Croft; Anthony Cros; Rosalind J. Cutts; A. Di Génova; Simon A. Forbes; T. Fujisawa; Emanuela Gadaleta; David Goodstein; Gunes Gundem; Bernard Haggarty; Syed Haider; Matthew Hall; Todd W. Harris; Robin Haw; Songnian Hu; Simon J. Hubbard; Jack Hsu; Vivek Iyer; Philip Jones; Toshiaki Katayama; Rhoda Kinsella; Lei Kong; Daniel Lawson
BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities. Database URL: http://central.biomart.org.
Nature Methods | 2015
Pau Creixell; Jüri Reimand; Syed Haider; Guanming Wu; Tatsuhiro Shibata; Miguel Vazquez; Ville Mustonen; Abel Gonzalez-Perez; John V. Pearson; Chris Sander; Benjamin J. Raphael; Debora S. Marks; B. F. Francis Ouellette; Alfonso Valencia; Gary D. Bader; Paul C. Boutros; Joshua M. Stuart; Rune Linding; Nuria Lopez-Bigas; Lincoln Stein
Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.
Oncogene | 2015
Hani Choudhry; Ashwag Albukhari; M Morotti; Syed Haider; Daniela Moralli; James Smythies; Johannes Schödel; Catherine M. Green; Carme Camps; Francesca M. Buffa; Peter J. Ratcliffe; Jiannis Ragoussis; Adrian L. Harris; David R. Mole
Activation of cellular transcriptional responses, mediated by hypoxia-inducible factor (HIF), is common in many types of cancer, and generally confers a poor prognosis. Known to induce many hundreds of protein-coding genes, HIF has also recently been shown to be a key regulator of the non-coding transcriptional response. Here, we show that NEAT1 long non-coding RNA (lncRNA) is a direct transcriptional target of HIF in many breast cancer cell lines and in solid tumors. Unlike previously described lncRNAs, NEAT1 is regulated principally by HIF-2 rather than by HIF-1. NEAT1 is a nuclear lncRNA that is an essential structural component of paraspeckles and the hypoxic induction of NEAT1 induces paraspeckle formation in a manner that is dependent upon both NEAT1 and on HIF-2. Paraspeckles are multifunction nuclear structures that sequester transcriptionally active proteins as well as RNA transcripts that have been subjected to adenosine-to-inosine (A-to-I) editing. We show that the nuclear retention of one such transcript, F11R (also known as junctional adhesion molecule 1, JAM1), in hypoxia is dependent upon the hypoxic increase in NEAT1, thereby conferring a novel mechanism of HIF-dependent gene regulation. Induction of NEAT1 in hypoxia also leads to accelerated cellular proliferation, improved clonogenic survival and reduced apoptosis, all of which are hallmarks of increased tumorigenesis. Furthermore, in patients with breast cancer, high tumor NEAT1 expression correlates with poor survival. Taken together, these results indicate a new role for HIF transcriptional pathways in the regulation of nuclear structure and that this contributes to the pro-tumorigenic hypoxia-phenotype in breast cancer.
Molecular Systems Biology | 2010
Marco Botta; Syed Haider; Ian X. Y. Leung; Pietro Liò; Julien Mozziconacci
A prime goal in systems biology is the comprehensive use of existing high‐throughput genomic datasets to gain a better understanding of chromatin organization and genome function. In this report, we use chromatin immunoprecipitation (ChIP) data that map protein‐binding sites on the genome, and Hi‐C data that map interactions between DNA fragments in the genome in an integrative approach. We first reanalyzed the contact map of the human genome as determined with Hi‐C and found that long‐range interactions are highly nonrandom; the same DNA fragments are often found interacting together. We then show using ChIP data that these interactions can be explained by the action of the CCCTC‐binding factor (CTCF). These CTCF‐mediated interactions are found both within chromosomes and in between different chromosomes. This makes CTCF a major organizer of both the structure of the chromosomal fiber within each individual chromosome and of the chromosome territories within the cell nucleus.
Nature Communications | 2014
Twan van den Beucken; Elizabeth Koch; Kenneth C. Chu; Rajesha Rupaimoole; Peggy Prickaerts; Michiel E. Adriaens; Jan Willem Voncken; Adrian L. Harris; Francesca M. Buffa; Syed Haider; Maud H. W. Starmans; Cindy Q. Yao; Mircea Ivan; Cristina Ivan; Chad V. Pecot; Paul C. Boutros; Anil K. Sood; Marianne Koritzinsky; Bradly G. Wouters
MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer.