Syed Rahin Ahmed
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Syed Rahin Ahmed.
Biosensors and Bioelectronics | 2015
Jaewook Lee; Syed Rahin Ahmed; Sangjin Oh; Jeonghyo Kim; Tetsuro Suzuki; Kaushik Parmar; Simon S. Park; Jaebeom Lee; Enoch Y. Park
A plasmon-assisted fluoro-immunoassay (PAFI) was developed for the detection of the influenza virus by using Au nanoparticle (Au NP)-decorated carbon nanotubes (AuCNTs) that were synthesized using phytochemical composites at room temperature in deionized water. Specific antibodies (Abs) against the influenza virus were conjugated onto the surface of AuCNTs and cadmium telluride quantum dots (QDs), which had a photoluminescence intensity that varied as a function of virus concentration and a detection limit of 0.1 pg/mL for all three types of influenza viruses examined. The clinically isolated influenza viruses (A/Yokohama/110/2009 (H3N2)) were detected in the range of 50-10,000 PFU/mL, with a detection limit of 50 PFU/mL. From a series of proof-of-concept and clinical experiments, the developed PAFI biosensing system provided robust signal production and enhancement, as well as an excellent selectivity and sensitivity for influenza viruses. This nanoparticle-based technique could be potentially developed as an efficient detection platform for the influenza virus.
ACS Applied Materials & Interfaces | 2014
Jaewook Lee; Jeonghyo Kim; Syed Rahin Ahmed; Hongjian Zhou; Jong-Man Kim; Jaebeom Lee
Metal-nanoparticle-functionalized graphene, in particular, graphene sheets containing Au nanoparticles (Au NPs), have generated considerable interest because of their unique optical and electrical characteristics. In this study, we successfully produced graphene sheets decorated with Au NPs (AuGrp) using phytochemicals as reducing agents. During this reaction, Au ions intercalated into the layered graphene flakes and were then reduced into NPs, exfoliating the graphene sheets. The physicochemical properties of the AuGrp nanocomposites were characterized, and the exfoliation process was investigated using a molecular dynamics simulation of Au NPs between graphene sheets. Our proposed technique is advantageous because the phytochemicals are mild reducing agents that preserve the graphene structure during exfoliation and NP decoration. The dispersity of the NPs on the graphene sheets was drastically improved due to the use of metal-ion intercalation. Moreover, the electrical conductivity was 6-30 times higher than that of bare graphene and reduced graphene oxide. Using antibody (Ab) modified AuGrp sheets and quantum dots, a plasmonic-induced photoluminescence immunoassay of tuberculosis (TB) antigen (aG) CFP-10 was demonstrated for a potential application of these materials. The enhancement of photoluminescence (PL) response was monitored depending on the various TB aG concentrations from 5.1 pg/mL to 51 μg/mL, and the detection limit for CFP-10 was 4.5 pg/mL. Furthermore, the selectivity was demonstrated with Ag85 as the other TB aG, and PL enhancement was not observed in this case. Therefore, AuGrp-based immunoassay showed the potential for biosensor application.
Biosensors and Bioelectronics | 2017
Syed Rahin Ahmed; Kenshin Takemeura; Tian-Cheng Li; Noritoshi Kitamoto; Tomoyuki Tanaka; Tetsuro Suzuki; Enoch Y. Park
A hybrid structure of graphene-gold nanoparticles (Grp-Au NPs) was designed as a new nanoprobe for colorimetric immunoassays. This hybrid structure was prepared using chloroauric acid, sodium formate and Grp flakes at room temperature. Au NPs attached strongly onto the Grp surface, and their size was controlled by varying the sodium formate concentration. The Raman intensity of the Grp-Au NP hybrids was significantly enhanced at 1567cm-1 and 2730cm-1 compared with those of pristine Grp because of the electronic interaction between Au NPs and Grp. The Grp-Au NPs with a hybrid structure catalyzed the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) with H2O2, developing a blue color in aqueous solution. This catalytic activity was utilized to detect norovirus-like particles (NoV-LPs) in human serum. The enhanced colorimetric response was monitored using Ab-conjugated-Grp-Au NPs and found to depend on the NoV-LP concentration, exhibiting a linear response from 100pg/mL to 10μg/mL. The limit of detection (LOD) of this proposed method was 92.7pg/mL, 112 times lower than that of a conventional enzyme-linked immunosorbent assay (ELISA). The sensitivity of this test was also 41 times greater than that of a commercial diagnostic kit. The selectivity of the Grp-Au NPs was tested with other viruses, and no color changes were observed. Therefore, the proposed system will facilitate the utilization of the intrinsic peroxidase-like activity of Grp-Au NPs in medical diagnostics. We believe that the engineered catalytic Grp-Au NP hybrids could find potential applications in the future development of biocatalysts and bioassays.
Biosensors and Bioelectronics | 2014
Syed Rahin Ahmed; Md. Ashraf Hossain; Jung Youn Park; Soo-Hyung Kim; Dongyun Lee; Tetsuro Suzuki; Jaebeom Lee; Enoch Y. Park
In the present study, a rapid, sensitive and quantitative detection of influenza A virus targeting hemagglutinin (HA) was developed using hybrid structure of quantum dots (QDs) and nanoporous gold leaf (NPGL). NPGL film was prepared by dealloying bimetallic film where its surface morphology and roughness were fairly controlled. Anti-influenza A virus HA antibody (ab66189) was bound with NPGL and amine (-NH2) terminated QDs. These biofunctionalized NPGL and QDs formed a complex with the influenza virus A/Beijing/262/95 (H1N1) and the photoluminescence (PL) intensities of QDs were linearly correlated with the concentrations of the virus up to 1ng/mL while no PL was observed in the absence of the virus, or in bovine serum albumin (BSA, 1µg/mL) alone. In addition, it was demonstrated that this assay detected successfully influenza virus A/Yokohama/110/2009 (H3N2) that is isolated from a clinical sample, at a concentration of ca. 50 plaque forming units (PFU)/mL. This detection limit is 2-order more sensitive than a commercially available rapid influenza diagnostic test. From these results, the proposed assay may offer a new strategy to monitor influenza virus for public health.
Scientific Reports | 2017
Syed Rahin Ahmed; Jeonghyo Kim; Van Tan Tran; Tetsuro Suzuki; Jaebeom Lee; Enoch Y. Park
Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. An in situ method has been developed to fabricate gold nanoparticle (Au NP) films on different substrates, regardless of whether they are hydrophilic or hydrophobic surfaces, including glass, 96-well polystyrene plates, and polydimethylsiloxane (PDMS). A mixture of sodium formate (HCOONa) and chloroauric acid (HAuCl4) solution was used to prepare Au NP films at room temperature. An experimental study of the mechanism revealed that film formation is dependent on surface wettability and inter particle attraction. The as-fabricated Au NP films were further applied to the colorimetric detection of influenza virus. The response to the commercial target, New Caledonia/H1N1/1999 influenza virus, was linear in the range from 10 pg/ml to 10 μg/ml and limit of detection was 50.5 pg/ml. In the presence of clinically isolated influenza A virus (H3N2), the optical density of developed color was dependent on the virus concentration (10–50,000 PFU/ml). The limit of detection of this study was 24.3 PFU/ml, a limit 116 times lower than that of conventional ELISA (2824.3 PFU/ml). The sensitivity was also 500 times greater than that of commercial immunochromatography kits.
Biotechnology and Bioengineering | 2016
Syed Rahin Ahmed; Jeonghyo Kim; Tetsuro Suzuki; Jaebeom Lee; Enoch Y. Park
A modified enzyme-linked immunosorbent assay (ELISA) with nanomaterials is an effective and powerful method to amplify the signal and reduce the cost of detecting and measuring trace biomarkers or proteins. In this study, an ultra-sensitive colorimetric immunoassay was designed, and its ability to detect influenza viruses using positively charged gold nanoparticles ((+)Au NPs) was assessed as a possible role for peroxidase-mimic inorganic enzymes. This method detected influenza virus A (H1N1) with a linear range up to 10 pg mL(-1) and clinically isolated influenza virus A (H3N2) up to 10 plaque forming units (PFU) mL(-1) , where its sensitivity improved to 500-fold higher than that of commercial virus kits. The sensitivity of this proposed method was not declined even though in complex biological media in compared to conventional ELISA. These results revealed that the (+)AuNP-based colorimetric immunoassay could be suitable for lab-on-a-chip device and open new opportunities for clinical protein diagnostics. Biotechnol. Bioeng. 2016;113: 2298-2303.
Nanoscale Research Letters | 2012
Syed Rahin Ahmed; Jung Youn Park; Enoch Y. Park; Dongyun Lee; Jaebeom Lee
Noble metal nanostructure allows us to tune optical and electrical properties, which has high utility for real-world application. We studied surface plasmon-induced emission of semiconductor quantum dots (QDs) on engineered metallic nanostructures. Highly passive organic ZnS-capped CdSe QDs were spin-coated on poly-(methyl methacrylate)-covered Ag films, which brought QDs near the metallic surface. We obtained the enhanced electromagnetic field and reduced fluorescence lifetimes from CdSe/ZnS QDs due to the strong coupling of emitter wave function with the Ag plasmon resonance. Observed changes include a six-fold increase in the fluorescence intensity and striking reduction in fluorescence lifetimes of CdSe/ZnS QDs on rough Ag nanoneedle compared to the case of smooth surfaces. The advantages of using those nanocomposites are expected for high-efficiency light-emitting diodes, platform fabrication of biological and environmental monitoring, and high-contrast imaging.
Korean Journal of Chemical Engineering | 2013
Syed Rahin Ahmed; Kwangnak Koh; Enoch Y. Park; Jaebeom Lee
Owing to the fast growth of the agricultural bioproducts industry, which requires its products to be fresh and visibly appealing, the increased use of imidacloprid pesticides has raised deep concerns about environmental effects, food quality, and the toxicity of residues. This has led to the development of various extraction methods of biochemicals and chemicals and their effective sensors for monitoring pesticide residues. We review the current commercial and nanotechnology-adopted techniques available in order to draw attention to the primary issues in the development of novel extraction and sensing systems using nanotechnology.
Biosensors and Bioelectronics | 2018
Syed Rahin Ahmed; Jack Mogus; Rohit Chand; Éva Nagy; Suresh Neethirajan
An optoelectronic sensor is a rapid diagnostic tool that allows for an accurate, reliable, field-portable, low-cost device for practical applications. In this study, template-free In situ gold nanobundles (Au NBs) were fabricated on an electrode for optoelectronic sensing of fowl adenoviruses (FAdVs). Au NB film was fabricated on carbon electrodes working area using L(+) ascorbic acid, gold chroloauric acid and poly-l-lysine (PLL) through modified layer-by-layer (LbL) method. A scanning electron microscopic (SEM) image of the Au NBs revealed a NB-shaped Au structure with many kinks on its surface, which allow local electric field enhancement through light-matter interaction with graphene quantum dots (GQDs). Here, GQDs were synthesized through an autoclave-assisted method. Characterization experiments revealed blue-emissive, well-dispersed GQDs that were 2-3nm in size with the fluorescence emission peak of GQDs located at 405nm. Both Au NBs and GQDs were conjugated with target FAdVs specific antibodies that bring them close to each other with the addition of target FAdVs through antibody-antigen interaction. At close proximity, light-matter interaction between Au NBs and QDs produces a local electric signal enhancement under Ultraviolet-visible (UV-visible) light irradiation that allows the detection of very low concentrations of target virus even in complex biological media. A proposed optoelectronic sensor showed a linear relationship between the target FAdVs and the electric signal up to 10 Plaque forming unit (PFU)/mL with a limit of detection (LOD) of 8.75 PFU/mL. The proposed sensing strategy was 100 times more sensitive than conventional ELISA method.
Nanoscale Research Letters | 2016
Syed Rahin Ahmed; Sangjin Oh; Rina Baba; Hongjian Zhou; Sungu Hwang; Jaebeom Lee; Enoch Y. Park
The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.