Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Bonhommeau is active.

Publication


Featured researches published by Sylvain Bonhommeau.


Science | 2011

Global Seabird Response to Forage Fish Depletion—One-Third for the Birds

Philippe Cury; Ian L. Boyd; Sylvain Bonhommeau; Tycho Anker-Nilssen; Robert J. M. Crawford; Robert W. Furness; James A. Mills; Eugene J. Murphy; Henrik Österblom; Michelle Paleczny; John F. Piatt; Jean-Paul Roux; Lynne J. Shannon; William J. Sydeman

One-third of maximum fish biomass must be available for seabirds to sustain high breeding success. Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed “forage fish”) abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.


Ecology Letters | 2010

Global marine primary production constrains fisheries catches

Emmanuel Chassot; Sylvain Bonhommeau; Nicholas K. Dulvy; Frédéric Mélin; Reg Watson; Didier Gascuel; Olivier Le Pape

Primary production must constrain the amount of fish and invertebrates available to expanding fisheries; however the degree of limitation has only been demonstrated at regional scales to date. Here we show that phytoplanktonic primary production, estimated from an ocean-colour satellite (SeaWiFS), is related to global fisheries catches at the scale of Large Marine Ecosystems, while accounting for temperature and ecological factors such as ecosystem size and type, species richness, animal body size, and the degree and nature of fisheries exploitation. Indeed we show that global fisheries catches since 1950 have been increasingly constrained by the amount of primary production. The primary production appropriated by current global fisheries is 17-112% higher than that appropriated by sustainable fisheries. Global primary production appears to be declining, in some part due to climate variability and change, with consequences for the near future fisheries catches.


Journal of Fish Biology | 2009

Estimates of the mortality and the duration of the trans-Atlantic migration of European eel Anguilla anguilla leptocephali using a particle tracking model

Sylvain Bonhommeau; O. Le Pape; Didier Gascuel; Bruno Blanke; Anne-Marie Treguier; Nicolas Grima; Martin Castonguay; Etienne Rivot

Using Lagrangian simulations, based on circulation models over three different hydroclimatic periods in the last 45 years in the North Atlantic Ocean, the trans-Atlantic migration of the European eel Anguilla anguilla leptocephali was simulated via the passive drift of particles released in the spawning area. Three different behaviours were modelled: drifting at fixed depth, undergoing a vertical migration or choosing the fastest currents. Simulations included mortality hypotheses to estimate a realistic mean migration duration and relative survival of A. anguilla larvae. The mean migration duration was estimated as 21 months and the mortality rate as 3.8 per year, i.e. < 0.2% of A. anguilla larvae may typically survive the trans-Atlantic migration.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Eating up the world’s food web and the human trophic level

Sylvain Bonhommeau; Laurent Dubroca; Olivier Le Pape; Julien Barde; David M. Kaplan; Emmanuel Chassot; Anne-Elise Nieblas

Significance Here we combine ecological theory, demography, and socio-economics to calculate the human trophic level (HTL) and position humans in the context of the food web. Trophic levels are a measure of diet composition and are a basic metric in ecology, but have never been calculated for humans. In the global food web, we discover that humans are similar to anchovy or pigs and cannot be considered apex predators. In addition, we show that, although countries have diverse diets, there are just five major groups of countries with similar dietary trends. We find significant links between HTL and important World Bank development indicators, giving insights into the relationship between socio-economic, environmental, and health conditions and changing dietary patterns. Trophic levels are critical for synthesizing species’ diets, depicting energy pathways, understanding food web dynamics and ecosystem functioning, and monitoring ecosystem health. Specifically, trophic levels describe the position of species in a food web, from primary producers to apex predators (range, 1–5). Small differences in trophic level can reflect large differences in diet. Although trophic levels are among the most basic information collected for animals in ecosystems, a human trophic level (HTL) has never been defined. Here, we find a global HTL of 2.21, i.e., the trophic level of anchoveta. This value has increased with time, consistent with the global trend toward diets higher in meat. National HTLs ranging between 2.04 and 2.57 reflect a broad diversity of diet, although cluster analysis of countries with similar dietary trends reveals only five major groups. We find significant links between socio-economic and environmental indicators and global dietary trends. We demonstrate that the HTL is a synthetic index to monitor human diets and provides a baseline to compare diets between countries.


Biological Reviews | 2015

A century of research on the larval distributions of the Atlantic eels: a re-examination of the data

Michael J. Miller; Sylvain Bonhommeau; Peter Munk; Martin Castonguay; Reinhold Hanel; James D. McCleave

The spawning areas of the Atlantic freshwater eels were discovered about a century ago by the Danish scientist Johannes Schmidt who after years of searching found newly hatched larvae of the European eel, Anguilla anguilla, and the American eel, Anguilla rostrata, in the southern Sargasso Sea. The discovery showed that anguillid eels migrate thousands of kilometers to offshore spawning areas for reproduction, and that their larvae, called leptocephali, are transported equally long distances by ocean currents to their continental recruitment areas. The spawning sites were found to be related to oceanographic conditions several decades later by German and American surveys from 1979 to 1989 and by a Danish survey in 2007 and a German survey in 2011. All these later surveys showed that spawning occurred within a restricted latitudinal range, between temperature fronts within the Subtropical Convergence Zone of the Sargasso Sea. New data and re‐examinations of Schmidts data confirmed his original conclusions about the two species having some overlap in spawning areas. Although there have been additional collections of leptocephali in various parts of the North Atlantic, and both otolith research and transport modelling studies have subsequently been carried out, there is still a range of unresolved questions about the routes of larval transport and durations of migration. This paper reviews the history and basic findings of surveys for anguillid leptocephali in the North Atlantic and analyses a new comprehensive database that includes 22612 A. anguilla and 9634 A. rostrata leptocephali, which provides a detailed view of the spatial and temporal distributions and size of the larvae across the Atlantic basin and in the Mediterranean Sea. The differences in distributions, maximum sizes, and growth rates of the two species of larvae are likely linked to the contrasting migration distances to their recruitment areas on each side of the basin. Anguilla rostrata leptocephali originate from a more western spawning area, grow faster, and metamorphose at smaller sizes of <70 mm than the larvae of A. anguilla, which mostly are spawned further east and can reach sizes of almost 90 mm. The larvae of A. rostrata spread west and northwest from the spawning area as they grow larger, with some being present in the western Caribbean and eastern Gulf of Mexico. Larvae of A. anguilla appear to be able to reach Europe by entering the Gulf Stream system or by being entrained into frontal countercurrents that transport them directly northeastward. The larval duration of A. anguilla is suggested to be quite variable, but gaps in sampling effort prevent firm conclusions. Although knowledge about larval behaviour is lacking, some influences of directional swimming are implicated by the temporal distributions of the largest larvae. Ocean–atmosphere changes have been hypothesized to affect the survival of the larvae and cause reduced recruitment, so even after about a century following the discovery of their spawning areas, mysteries still remain about the marine life histories of the Atlantic eels.


PLOS ONE | 2012

Effects of Stochasticity in Early Life History on Steepness and Population Growth Rate Estimates: An Illustration on Atlantic Bluefin Tuna

Maximilien Simon; Jean-Marc Fromentin; Sylvain Bonhommeau; Daniel Gaertner; Jon Brodziak; Marie Pierre Etienne

The intrinsic population growth rate (r) of the surplus production function used in the biomass dynamic model and the steepness (h) of the stock-recruitment relationship used in age-structured population dynamics models are two key parameters in fish stock assessment. There is generally insufficient information in the data to estimate these parameters that thus have to be constrained. We developed methods to directly estimate the probability distributions of r and h for the Atlantic bluefin tuna (Thunnus thynnus, Scombridae), using all available biological and ecological information. We examined the existing literature to define appropriate probability distributions of key life history parameters associated with intrinsic growth rate and steepness, paying particular attention to the natural mortality for early life history stages. The estimated probability distribution of the population intrinsic growth rate was weakly informative, with an estimated mean r = 0.77 (±0.53) and an interquartile range of (0.34, 1.12). The estimated distribution of h was more informative, but also strongly asymmetric with an estimated mean h = 0.89 (±0.20) and a median of 0.99. We note that these two key demographic parameters strongly depend on the distribution of early life history mortality rate (M0), which is known to exhibit high year-to-year variations. This variability results in a widely spread distribution of M0 that affects the distribution of the intrinsic population growth rate and further makes the spawning stock biomass an inadequate proxy to predict recruitment levels.


PLOS ONE | 2014

Defining Mediterranean and Black Sea biogeochemical subprovinces and synthetic ocean indicators using mesoscale oceanographic features.

Anne-Elise Nieblas; Kyla Drushka; Gabriel Reygondeau; Vincent Rossi; Hervé Demarcq; Laurent Dubroca; Sylvain Bonhommeau

The Mediterranean and Black Seas are semi-enclosed basins characterized by high environmental variability and growing anthropogenic pressure. This has led to an increasing need for a bioregionalization of the oceanic environment at local and regional scales that can be used for managerial applications as a geographical reference. We aim to identify biogeochemical subprovinces within this domain, and develop synthetic indices of the key oceanographic dynamics of each subprovince to quantify baselines from which to assess variability and change. To do this, we compile a data set of 101 months (2002–2010) of a variety of both “classical” (i.e., sea surface temperature, surface chlorophyll-a, and bathymetry) and “mesoscale” (i.e., eddy kinetic energy, finite-size Lyapunov exponents, and surface frontal gradients) ocean features that we use to characterize the surface ocean variability. We employ a k-means clustering algorithm to objectively define biogeochemical subprovinces based on classical features, and, for the first time, on mesoscale features, and on a combination of both classical and mesoscale features. Principal components analysis is then performed on the oceanographic variables to define integrative indices to monitor the environmental changes within each resultant subprovince at monthly resolutions. Using both the classical and mesoscale features, we find five biogeochemical subprovinces for the Mediterranean and Black Seas. Interestingly, the use of mesoscale variables contributes highly in the delineation of the open ocean. The first axis of the principal component analysis is explained primarily by classical ocean features and the second axis is explained by mesoscale features. Biogeochemical subprovinces identified by the present study can be useful within the European management framework as an objective geographical framework of the Mediterranean and Black Seas, and the synthetic ocean indicators developed here can be used to monitor variability and long-term change.


Naturwissenschaften | 2014

Low larval abundance in the Sargasso Sea: new evidence about reduced recruitment of the Atlantic eels

Reinhold Hanel; Daniel Stepputtis; Sylvain Bonhommeau; Martin Castonguay; Matthias Schaber; Klaus Wysujack; Michael Vobach; Michael J. Miller

The European eel Anguilla anguilla has shown decreased recruitment in recent decades. Despite increasing efforts to establish species recovery measures, it is unclear if the decline was caused by reduced numbers of reproductive-stage silver eels reaching the spawning area, low early larval survival, or increased larval mortality during migration to recruitment areas. To determine if larval abundances in the spawning area significantly changed over the past three decades, a plankton trawl sampling survey for anguillid leptocephali was conducted in March and April 2011 in the spawning area of the European eel that was designed to directly compare to collections made in the same way in 1983 and 1985. The catch rates of most anguilliform leptocephali were lower in 2011, possibly because of the slightly smaller plankton trawl used, but the relative abundances of European eel and American eel, Anguilla rostrata, leptocephali were much lower in 2011 than in 1983 and 1985 when compared to catches of other common leptocephali. The leptocephali assemblage was the same in 2011 as in previous years, but small larvae of mesopelagic snipe eels, Nemichthys scolopaceus, which spawn sympatrically with anguillid eels, were less abundant. Temperature fronts in the spawning area were also poorly defined compared to previous years. Although the causes for low anguillid larval abundances in 2011 are unclear, the fact that there are presently fewer European and American eel larvae in the spawning area than during previous time periods indicates that decreased larval abundance and lower eventual recruitment begin within the spawning area.


PLOS ONE | 2015

Co-Occurrence and Habitat Use of Fin Whales, Striped Dolphins and Atlantic Bluefin Tuna in the Northwestern Mediterranean Sea

Robert Klaus Bauer; Jean-Marc Fromentin; Hervé Demarcq; Blandine Brisset; Sylvain Bonhommeau

Different dolphin and tuna species have frequently been reported to aggregate in areas of high frontal activity, sometimes developing close multi-species associations to increase feeding success. Aerial surveys are a common tool to monitor the density and abundance of marine mammals, and have recently become a focus in the search for methods to provide fisheries-independent abundance indicators for tuna stock assessment. In this study, we present first density estimates corrected for availability bias of fin whales (Balaenoptera physalus) and striped dolphins (Stenella coeruleoalba) from the Golf of Lions (GoL), compared with uncorrected estimates of Atlantic bluefin tuna (ABFT; Thunnus thynnus) densities from 8 years of line transect aerial surveys. The raw sighting data were further used to analyze patterns of spatial co-occurrence and density of these three top marine predators in this important feeding ground in the Northwestern Mediterranean Sea. These patterns were investigated regarding known species-specific feeding preferences and environmental characteristics (i. e. mesoscale activity) of the survey zone. ABFT was by far the most abundant species during the surveys in terms of schools and individuals, followed by striped dolphins and fin whales. However, when accounted for availability bias, schools of dolphins and fin whales were of equal density. Direct interactions of the species appeared to be the exception, but results indicate that densities, presence and core sighting locations of striped dolphins and ABFT were correlated. Core sighting areas of these species were located close to an area of high mesoscale activity (oceanic fronts and eddies). Fin whales did not show such a correlation. The results further highlight the feasibility to coordinate research efforts to explore the behaviour and abundance of the investigated species, as demanded by the Marine Strategy Framework Directive (MSFD).


Ices Journal of Marine Science | 2018

Assessing causal links in fish stock–recruitment relationships

Maud Pierre; Tristan Rouyer; Sylvain Bonhommeau; Jean-Marc Fromentin

Understanding whether recruitment fluctuations in fish stock arise from stochastic forcing (e.g. environmental variations) rather than deterministic forces (e.g. intrinsic dynamics) is a long standing question with important applied consequences for fisheries ecology. In particular, the relationship between recruitment, spawning stock biomass and environmental factors is still poorly understood, even though this aspect is crucial for fisheries management. Fisheries data are often short, but arise from complex dynamical systems with a high degree of stochastic forcing, which are difficult to capture through classic modelling approaches. In the present study, recent statistical approaches based on the approximation of the attractors of dynamical systems are applied on a large dataset of time series to assess (i) the directionality of potential causal relationships between recruitment and spawning stock biomass and potential influence of sea-surface temperature on recruitment and (ii) their performance to forecast recruitment. Our study shows that (i) whereas spawning stock biomass and sea surface temperature influence the recruitment to a lesser extent, recruitment causes also parental stock size and (ii) that non-linear forecasting methods performed well for the short-term predictions of recruitment time series. Our results underline that the complex and stochastic nature of the processes characterizing recruitment are unlikely to be captured by classical stock-recruitment relationships, but that non-linear forecasting methods provide interesting perspectives in that respect.

Collaboration


Dive into the Sylvain Bonhommeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Chassot

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Barde

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Martin Castonguay

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge