Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Brisse is active.

Publication


Featured researches published by Sylvain Brisse.


PLOS Medicine | 2006

Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak.

Isabelle Schuffenecker; Isabelle Iteman; Alain Michault; Séverine Murri; Lionel Frangeul; Marie-Christine Vaney; Rachel Lavenir; Nathalie Pardigon; Jean-Marc Reynes; François Pettinelli; Leon Biscornet; Laure Diancourt; Stéphanie Michel; Stéphane Duquerroy; Ghislaine Guigon; Marie-Pascale Frenkiel; Anne-Claire Brehin; Nadège Cubito; Philippe Desprès; Frank Kunst; Félix A. Rey; Hervé Zeller; Sylvain Brisse

Background A chikungunya virus outbreak of unprecedented magnitude is currently ongoing in Indian Ocean territories. In Réunion Island, this alphavirus has already infected about one-third of the human population. The main clinical symptom of the disease is a painful and invalidating poly-arthralgia. Besides the arthralgic form, 123 patients with a confirmed chikungunya infection have developed severe clinical signs, i.e., neurological signs or fulminant hepatitis. Methods and Findings We report the nearly complete genome sequence of six selected viral isolates (isolated from five sera and one cerebrospinal fluid), along with partial sequences of glycoprotein E1 from a total of 127 patients from Réunion, Seychelles, Mauritius, Madagascar, and Mayotte islands. Our results indicate that the outbreak was initiated by a strain related to East-African isolates, from which viral variants have evolved following a traceable microevolution history. Unique molecular features of the outbreak isolates were identified. Notably, in the region coding for the non-structural proteins, ten amino acid changes were found, four of which were located in alphavirus-conserved positions of nsP2 (which contains helicase, protease, and RNA triphosphatase activities) and of the polymerase nsP4. The sole isolate obtained from the cerebrospinal fluid showed unique changes in nsP1 (T301I), nsP2 (Y642N), and nsP3 (E460 deletion), not obtained from isolates from sera. In the structural proteins region, two noteworthy changes (A226V and D284E) were observed in the membrane fusion glycoprotein E1. Homology 3D modelling allowed mapping of these two changes to regions that are important for membrane fusion and virion assembly. Change E1-A226V was absent in the initial strains but was observed in >90% of subsequent viral sequences from Réunion, denoting evolutionary success possibly due to adaptation to the mosquito vector. Conclusions The unique molecular features of the analyzed Indian Ocean isolates of chikungunya virus demonstrate their high evolutionary potential and suggest possible clues for understanding the atypical magnitude and virulence of this outbreak.


Journal of Clinical Microbiology | 2005

Multilocus Sequence Typing of Klebsiella pneumoniae Nosocomial Isolates

Laure Diancourt; Virginie Passet; Jan Verhoef; Patrick A. D. Grimont; Sylvain Brisse

ABSTRACT A multilocus sequence typing (MLST) scheme was developed for Klebsiella pneumoniae. Sequences of seven housekeeping genes were obtained for 67 K. pneumoniae strains, including 19 ceftazidime- and ciprofloxacin-resistant isolates. Forty distinct allelic profiles were identified. MLST data were validated against ribotyping and showed high (96%) discriminatory power. The MLST approach provides unambiguous data useful for the epidemiology of K. pneumoniae isolates.


PLOS Pathogens | 2005

Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis

M. Cristina Gutierrez; Sylvain Brisse; Roland Brosch; Michel Fabre; Bahia Omaïs; Magali Marmiesse; Philip Supply; Véronique Vincent

The highly successful human pathogen Mycobacterium tuberculosis has an extremely low level of genetic variation, which suggests that the entire population resulted from clonal expansion following an evolutionary bottleneck around 35,000 y ago. Here, we show that this population constitutes just the visible tip of a much broader progenitor species, whose extant representatives are human isolates of tubercle bacilli from East Africa. In these isolates, we detected incongruence among gene phylogenies as well as mosaic gene sequences, whose individual elements are retrieved in classical M. tuberculosis. Therefore, despite its apparent homogeneity, the M. tuberculosis genome appears to be a composite assembly resulting from horizontal gene transfer events predating clonal expansion. The amount of synonymous nucleotide variation in housekeeping genes suggests that tubercle bacilli were contemporaneous with early hominids in East Africa, and have thus been coevolving with their human host much longer than previously thought. These results open novel perspectives for unraveling the molecular bases of M. tuberculosis evolutionary success.


PLOS ONE | 2010

The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool

Laure Diancourt; Virginie Passet; Alexandr Nemec; Lenie Dijkshoorn; Sylvain Brisse

Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections.


PLOS Pathogens | 2008

Origin, Spread and Demography of the Mycobacterium tuberculosis Complex

Thierry Wirth; Falk Hildebrand; Caroline Allix-Béguec; Florian Wölbeling; Tanja Kubica; Kristin Kremer; Dick van Soolingen; Sabine Rüsch-Gerdes; Camille Locht; Sylvain Brisse; Axel Meyer; Philip Supply; Stefan Niemann

The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of “modern” human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations.


PLOS Pathogens | 2008

A new perspective on Listeria monocytogenes evolution.

Marie Ragon; Thierry Wirth; Florian Hollandt; Rachel Lavenir; Marc Lecuit; Alban Le Monnier; Sylvain Brisse

Listeria monocytogenes is a model organism for cellular microbiology and host–pathogen interaction studies and an important food-borne pathogen widespread in the environment, thus representing an attractive model to study the evolution of virulence. The phylogenetic structure of L. monocytogenes was determined by sequencing internal portions of seven housekeeping genes (3,288 nucleotides) in 360 representative isolates. Fifty-eight of the 126 disclosed sequence types were grouped into seven well-demarcated clonal complexes (clones) that comprised almost 75% of clinical isolates. Each clone had a unique or dominant serotype (4b for clones 1, 2 and 4, 1/2b for clones 3 and 5, 1/2a for clone 7, and 1/2c for clone 9), with no association of clones with clinical forms of human listeriosis. Homologous recombination was extremely limited (r/m<1 for nucleotides), implying long-term genetic stability of multilocus genotypes over time. Bayesian analysis based on 438 SNPs recovered the three previously defined lineages, plus one unclassified isolate of mixed ancestry. The phylogenetic distribution of serotypes indicated that serotype 4b evolved once from 1/2b, the likely ancestral serotype of lineage I. Serotype 1/2c derived once from 1/2a, with reference strain EGDe (1/2a) likely representing an intermediate evolutionary state. In contrast to housekeeping genes, the virulence factor internalin (InlA) evolved by localized recombination resulting in a mosaic pattern, with convergent evolution indicative of natural selection towards a truncation of InlA protein. This work provides a reference evolutionary framework for future studies on L. monocytogenes epidemiology, ecology, and virulence.


Science | 2006

Evolutionary history of Salmonella typhi.

Philippe Roumagnac; François-Xavier Weill; Christiane Dolecek; Stephen Baker; Sylvain Brisse; Nguyen Tran Chinh; Thi Anh Hong Le; Camilo J. Acosta; Jeremy Farrar; Gordon Dougan; Mark Achtman

For microbial pathogens, phylogeographic differentiation seems to be relatively common. However, the neutral population structure of Salmonella enterica serovar Typhi reflects the continued existence of ubiquitous haplotypes over millennia. In contrast, clinical use of fluoroquinolones has yielded at least 15 independent gyrA mutations within a decade and stimulated clonal expansion of haplotype H58 in Asia and Africa. Yet, antibiotic-sensitive strains and haplotypes other than H58 still persist despite selection for antibiotic resistance. Neutral evolution in Typhi appears to reflect the asymptomatic carrier state, and adaptive evolution depends on the rapid transmission of phenotypic changes through acute infections.


PLOS Pathogens | 2012

Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica

Mark Achtman; John Wain; François-Xavier Weill; Satheesh Nair; Zhemin Zhou; Vartul Sangal; Mary G. Krauland; James Hale; Heather Harbottle; Alexandra Uesbeck; Gordon Dougan; Lee H. Harrison; Sylvain Brisse

Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents.


PLOS ONE | 2009

Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization.

Sylvain Brisse; Cindy Fevre; Virginie Passet; Sylvie Issenhuth-Jeanjean; Régis Tournebize; Laure Diancourt; Patrick A. D. Grimont

Klebsiella pneumoniae is found in the environment and as a harmless commensal, but is also a frequent nosocomial pathogen (causing urinary, respiratory and blood infections) and the agent of specific human infections including Friedländers pneumonia, rhinoscleroma and the emerging disease pyogenic liver abscess (PLA). The identification and precise definition of virulent clones, i.e. groups of strains with a single ancestor that are associated with particular infections, is critical to understand the evolution of pathogenicity from commensalism and for a better control of infections. We analyzed 235 K. pneumoniae isolates of diverse environmental and clinical origins by multilocus sequence typing, virulence gene content, biochemical and capsular profiling and virulence to mice. Phylogenetic analysis of housekeeping genes clearly defined clones that differ sharply by their clinical source and biological features. First, two clones comprising isolates of capsular type K1, clone CC23K1 and clone CC82K1, were strongly associated with PLA and respiratory infection, respectively. Second, only one of the two major disclosed K2 clones was highly virulent to mice. Third, strains associated with the human infections ozena and rhinoscleroma each corresponded to one monomorphic clone. Therefore, K. pneumoniae subsp. ozaenae and K. pneumoniae subsp. rhinoscleromatis should be regarded as virulent clones derived from K. pneumoniae. The lack of strict association of virulent capsular types with clones was explained by horizontal transfer of the cps operon, responsible for the synthesis of the capsular polysaccharide. Finally, the reduction of metabolic versatility observed in clones Rhinoscleromatis, Ozaenae and CC82K1 indicates an evolutionary process of specialization to a pathogenic lifestyle. In contrast, clone CC23K1 remains metabolically versatile, suggesting recent acquisition of invasive potential. In conclusion, our results reveal the existence of important virulent clones associated with specific infections and provide an evolutionary framework for research into the links between clones, virulence and other genomic features in K. pneumoniae.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health

Kathryn E. Holt; Heiman Wertheim; Ruth N. Zadoks; Stephen Baker; Chris A. C.A. Whitehouse; David D. Dance; Adam A. Jenney; Thomas Richard Connor; Li Yang L.Y. Hsu; Juliëtte A. Severin; Sylvain Brisse; Hanwei H. Cao; Jonathan J. Wilksch; Claire Gorrie; Mark B. Schultz; David J. Edwards; Kinh Van Nguyen; Trung Vu Nguyen; Trinh Tuyet Dao; Martijn M. Mensink; Vien V. Le Minh; Nguyen Thi Khanh Nhu; Constance Schultsz; Kuntaman Kuntaman; Paul N. Newton; Catrin E. Moore; Richard A. Strugnell; Nicholas R. Thomson

Significance Klebsiella pneumoniae is rapidly becoming untreatable using last-line antibiotics. It is especially problematic in hospitals, where it causes a range of acute infections. To approach controlling such a bacterium, we first must define what it is and how it varies genetically. Here we have determined the DNA sequence of K. pneumoniae isolates from around the world and present a detailed analysis of these data. We show that there is a wide spectrum of diversity, including variation within shared sequences and gain and loss of whole genes. Using this detailed blueprint, we show that there is an unrecognized association between the possession of specific gene profiles associated with virulence and antibiotic resistance and the differing disease outcomes seen for K. pneumoniae. Klebsiella pneumoniae is now recognized as an urgent threat to human health because of the emergence of multidrug-resistant strains associated with hospital outbreaks and hypervirulent strains associated with severe community-acquired infections. K. pneumoniae is ubiquitous in the environment and can colonize and infect both plants and animals. However, little is known about the population structure of K. pneumoniae, so it is difficult to recognize or understand the emergence of clinically important clones within this highly genetically diverse species. Here we present a detailed genomic framework for K. pneumoniae based on whole-genome sequencing of more than 300 human and animal isolates spanning four continents. Our data provide genome-wide support for the splitting of K. pneumoniae into three distinct species, KpI (K. pneumoniae), KpII (K. quasipneumoniae), and KpIII (K. variicola). Further, for K. pneumoniae (KpI), the entity most frequently associated with human infection, we show the existence of >150 deeply branching lineages including numerous multidrug-resistant or hypervirulent clones. We show K. pneumoniae has a large accessory genome approaching 30,000 protein-coding genes, including a number of virulence functions that are significantly associated with invasive community-acquired disease in humans. In our dataset, antimicrobial resistance genes were common among human carriage isolates and hospital-acquired infections, which generally lacked the genes associated with invasive disease. The convergence of virulence and resistance genes potentially could lead to the emergence of untreatable invasive K. pneumoniae infections; our data provide the whole-genome framework against which to track the emergence of such threats.

Collaboration


Dive into the Sylvain Brisse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Lecuit

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge