Sylvain Egloff
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvain Egloff.
Trends in Genetics | 2008
Sylvain Egloff; Shona Murphy
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises multiple tandem conserved heptapeptide repeats, unique to this eukaryotic RNA polymerase. This unusual structure provides a docking platform for factors involved in various co-transcriptional events. Recruitment of the appropriate factors at different stages of the transcription cycle is achieved through changing patterns of post-translational modification of the CTD repeats, which create a readable code. A new phosphorylation mark both expands the CTD code and provides the first example of a CTD signal read in a gene type-specific manner. How and when is the code written and read? How does it contribute to transcription and coordinate RNA processing?
Science | 2007
Sylvain Egloff; Dawn O'Reilly; Rob D. Chapman; Alice Taylor; Katrin Tanzhaus; Laura Pitts; Dirk Eick; Shona Murphy
RNA polymerase II (Pol II) transcribes genes that encode proteins and noncoding small nuclear RNAs (snRNAs). The carboxyl-terminal repeat domain (CTD) of the largest subunit of mammalian RNA Pol II, comprising tandem repeats of the heptapeptide consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, is required for expression of both gene types. We show that mutation of serine-7 to alanine causes a specific defect in snRNA gene expression. We also present evidence that phosphorylation of serine-7 facilitates interaction with the snRNA gene–specific Integrator complex. These findings assign a biological function to this amino acid and highlight a gene type–specific requirement for a residue within the CTD heptapeptide, supporting the existence of a CTD code.
Trends in Genetics | 2012
Sylvain Egloff; Martin Dienstbier; Shona Murphy
The carboxyl-terminal domain (CTD) of RNA polymerase (pol) II comprises multiple tandem repeats with the consensus sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) that can be extensively and reversibly modified in vivo. CTD modifications orchestrate the interplay between transcription and processing of mRNA. Although phosphorylation of Ser2 (Ser2P) and Ser5 (Ser5P) residues has been described as being essential for the expression of most pol II-transcribed genes, recent findings highlight gene-specific effects of newly discovered CTD modifications. Here, we incorporate these latest findings in an updated review of the currently known elements that contribute to the CTD code and how it is recognized by proteins involved in transcription and RNA maturation. As modification of the CTD has a major impact on gene expression, a better understanding of the CTD code is integral to the understanding of how gene expression is regulated.
Molecular and Cellular Biology | 2006
Sylvain Egloff; Elodie Van Herreweghe; Tamás Kiss
ABSTRACT The positive transcription elongation factor b (P-TEFb), a complex of Cdk9 and cyclin T1/T2, stimulates transcription by phosphorylating RNA polymerase II. The 7SK small nuclear RNA, in cooperation with HEXIM1 protein, functions as a general polymerase II transcription regulator by sequestering P-TEFb into a large kinase-inactive 7SK/HEXIM1/P-TEFb complex. Here, determination and characterization of the functionally essential elements of human 7SK snRNA directing HEXIM1 and P-TEFb binding led to a new model for the assembly of the 7SK/HEXIM1/P-TEFb regulatory complex. We demonstrate that two structurally and functionally distinct protein binding elements located in the 5′- and 3′-terminal hairpins of 7SK support the in vivo recruitment of HEXIM1 and P-TEFb. Consistently, a minimal regulatory RNA composed of the 5′ and 3′ hairpins of 7SK can modulate polymerase II transcription in HeLa cells. HEXIM1 binds independently and specifically to the G24-C48/G60-C87 distal segment of the 5′ hairpin of 7SK. Binding of HEXIM1 is a prerequisite for association of P-TEFb with the G302-C324 apical region of the 3′ hairpin of 7SK that is highly reminiscent of the human immunodeficiency virus transactivation-responsive RNA.
Biochemical Society Transactions | 2008
Sylvain Egloff; Dawn O'Reilly; Shona Murphy
In addition to protein-coding genes, mammalian pol II (RNA polymerase II) transcribes independent genes for some non-coding RNAs, including the spliceosomal U1 and U2 snRNAs (small nuclear RNAs). snRNA genes differ from protein-coding genes in several key respects and some of the mechanisms involved in expression are gene-type-specific. For example, snRNA gene promoters contain an essential PSE (proximal sequence element) unique to these genes, the RNA-encoding regions contain no introns, elongation of transcription is P-TEFb (positive transcription elongation factor b)-independent and RNA 3-end formation is directed by a 3-box rather than a cleavage and polyadenylation signal. However, the CTD (C-terminal domain) of pol II closely couples transcription with RNA 5 and 3 processing in expression of both gene types. Recently, it was shown that snRNA promoter-specific recognition of the 3-box RNA processing signal requires a novel phosphorylation mark on the pol II CTD. This new mark plays a critical role in the recruitment of the snRNA gene-specific RNA-processing complex, Integrator. These new findings provide the first example of a phosphorylation mark on the CTD heptapeptide that can be read in a gene-type-specific manner, reinforcing the notion of a CTD code. Here, we review the control of expression of snRNA genes from initiation to termination of transcription.
Molecular Cell | 2012
Sylvain Egloff; Justyna Zaborowska; Clélia Laitem; Tamás Kiss; Shona Murphy
Summary The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) comprises multiple heptapeptide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Reversible phosphorylation of Ser2, Ser5, and Ser7 during the transcription cycle mediates the sequential recruitment of transcription/RNA processing factors. Phosphorylation of Ser7 is required for recruitment of the gene type-specific Integrator complex to the Pol II-transcribed small nuclear (sn)RNA genes. Here, we show that RNA Pol II-associated protein 2 (RPAP2) specifically recognizes the phospho-Ser7 mark on the Pol II CTD and also interacts with Integrator subunits. siRNA-mediated knockdown of RPAP2 and mutation of Ser7 to alanine cause similar defects in snRNA gene expression. In addition, we show that RPAP2 is a CTD Ser5 phosphatase. Taken together, our results indicate that during transcription of snRNA genes, Ser7 phosphorylation facilitates recruitment of RPAP2, which in turn both recruits Integrator and dephosphorylates Ser5.
Journal of Biological Chemistry | 2010
Sylvain Egloff; Sylwia Anna Szczepaniak; Martin Dienstbier; Alice Taylor; Sophie Knight; Shona Murphy
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) comprises multiple tandem repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This unusual structure serves as a platform for the binding of factors required for expression of pol II-transcribed genes, including the small nuclear RNA (snRNA) gene-specific Integrator complex. The pol II CTD specifically mediates recruitment of Integrator to the promoter of snRNA genes to activate transcription and direct 3′ end processing of the transcripts. Phosphorylation of the CTD and a serine in position 7 are necessary for Integrator recruitment. Here, we have further investigated the requirement of the serines in the CTD heptapeptide and their phosphorylation for Integrator binding. We show that both Ser2 and Ser7 of the CTD are required and that phosphorylation of these residues is necessary and sufficient for efficient binding. Using synthetic phosphopeptides, we have determined the pattern of the minimal Ser2/Ser7 double phosphorylation mark required for Integrator to interact with the CTD. This novel double phosphorylation mark is a new addition to the functional repertoire of the CTD code and may be a specific signal for snRNA gene expression.
Molecular and Cellular Biology | 2009
Sylvain Egloff; Hadeel Al-Rawaf; Dawn O'Reilly; Shona Murphy
ABSTRACT The negative elongation factor NELF is a key component of an early elongation checkpoint generally located within 100 bp of the transcription start site of protein-coding genes. Negotiation of this checkpoint and conversion to productive elongation require phosphorylation of the carboxy-terminal domain of RNA polymerase II (pol II), NELF, and DRB sensitivity-inducing factor (DSIF) by positive transcription elongation factor b (P-TEFb). P-TEFb is dispensable for transcription of the noncoding U2 snRNA genes, suggesting that a NELF-dependent checkpoint is absent. However, we find that NELF at the end of the 800-bp U2 gene transcription unit and RNA interference-mediated knockdown of NELF causes a termination defect. NELF is also associated 800 bp downstream of the transcription start site of the β-actin gene, where a “late” P-TEFb-dependent checkpoint occurs. Interestingly, both genes have an extended nucleosome-depleted region up to the NELF-dependent control point. In both cases, transcription through this region is P-TEFb independent, implicating chromatin in the formation of the terminator/checkpoint. Furthermore, CTCF colocalizes with NELF on the U2 and β-actin genes, raising the possibility that it helps the positioning and/or function of the NELF-dependent control point on these genes.
Nature Structural & Molecular Biology | 2016
Justyna Zaborowska; Sylvain Egloff; Shona Murphy
The C-terminal domain (CTD) of the large subunit of RNA polymerase (pol) II comprises conserved heptad repeats, and post-translational modification of the CTD regulates transcription and cotranscriptional RNA processing. Recently, the spatial patterns of modification of the CTD repeats have been investigated, and new functions of CTD modification have been revealed. In addition, there are new insights into the roles of the enzymes that decorate the CTD. We review these new findings and reassess the role of the pol II CTD in the regulation of gene expression.
Biochemical Society Transactions | 2008
Sylvain Egloff; Shona Murphy
Pol II (RNA polymerase II) transcribes the genes encoding proteins and non-coding snRNAs (small nuclear RNAs). The largest subunit of Pol II contains a distinctive CTD (C-terminal domain) comprising a repetitive heptad amino acid sequence, Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). This domain is now known to play a major role in the processes of transcription and co-transcriptional RNA processing in expression of both snRNA and protein-coding genes. The heptapeptide repeat unit can be extensively modified in vivo and covalent modifications of the CTD during the transcription cycle result in the ordered recruitment of RNA-processing factors. The most studied modifications are the phosphorylation of the serine residues in position 2 and 5 (Ser(2) and Ser(5)), which play an important role in the co-transcriptional processing of both mRNA and snRNA. An additional, recently identified CTD modification, phosphorylation of the serine residue in position 7 (Ser(7)) of the heptapeptide, is however specifically required for expression of snRNA genes. These findings provide interesting insights into the control of gene-specific Pol II function.