Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Pellerin is active.

Publication


Featured researches published by Sylvain Pellerin.


Plant and Soil | 2000

Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components

Daniel Plénet; Alain Mollier; Sylvain Pellerin

Biomass accumulation by crops depends on both light interception by leaves and on the efficiency with which the intercepted light is used to produce dry matter. Our aim was to identify which of these processes were affected for maize (Zea mays L., cv Volga) field crops grown under phosphorus (P) deficiency. In the preceding paper (Plénet et al., 2000), it was shown that P deficiency severely reduced leaf growth. In this paper, the effect of P deficiency on the radiation-use efficiency (RUE) was investigated. The experimental work was carried out in 1995, 1996 and 1997 on a long-term P fertilisation trial located on a sandy soil in the south-west of France. Three P fertilisation regimes have been applied since 1972: no- P (P0 treatment) and different rates of P fertiliser (P1.5: 1.5 times the grain P export and P3: 3 times the grain P export). These fertilisation regimes have led to contrasted levels of soil P supply. Only slight differences were observed between the P1.5 and P3 treatment for above-ground biomass accumulation and grain yield. Conversely the grain yield was significantly reduced in P0 (−11%). Above-ground biomass production was severely reduced, with the maximum difference between treatment (−60% in P0) occurring between 400 and 600 °C days after sowing. The lower biomass production in P0 was accounted for by the reduced amount of photosynthetically active radiation (PAR) absorbed by the canopy, which was itself the consequence of the reduced leaf area index (see Plénet et al., 2000). The calculated RUE were found to depend on the plant stage, especially during the pre-flowering period, and on the average air temperature. No effect of P deficiency was observed on the calculated RUE, even during the period when above-ground biomass accumulation was the most severely reduced. These results obtained in field crop conditions strengthen the idea that P deficiency affects plant growth, especially leaf growth, earlier and to a greater extent than photosynthesis per unit leaf area.


Plant and Soil | 2000

Growth analysis of maize field crops under phosphorus deficiency. I. Leaf growth.

Daniel Plénet; S. Etchebest; Alain Mollier; Sylvain Pellerin

Biomass accumulation by crops depends both on light interception by leaves and on the efficiency with which the intercepted light is used to produce dry matter. Our aim was to identify which of these processes were affected for maize (Zea Mays L., cv Volga) field crops grown under phosphorus (P) deficiency, and assess their relative importance. In this paper, the effects of P deficiency on leaf appearance, leaf elongation rate, final individual leaf area and leaf senescence were studied. The experimental work was carried out in 1995–1977 on a long-term P fertilisation trial located on a sandy soil in the south-west of France. Three P fertilisation regimes have been applied since 1972: no-P (P0 treatment) and different rates of P fertiliser (P1.5:1.5 times the grain P export and P3:3 times the grain P export). These fertilisation regimes have led to contrasted levels of soil P supply, with the P0 treatment being limiting for growth. Very few differences were observed about leaf growth between the P1.5 and P3 treatments. Conversely, the leaf area index (LAI) was significantly reduced in the P0 treatment, especially during the first phases of the crop cycle (up to −60% between the 7- and 14-visible leaves). This effect gradually decreased over time. The lower LAI in P0 treatment was due to two main processes affecting the leaf growth. The final number of leaves per plant and leaf senescence were only slightly modified by P deficiency. Conversely, leaf appearance was delayed during the period between leaf 4 and leaf 9. The value of the phyllochron increased from 47 °C days in the P1.5 treatment to 65 °C days in the P0 treatment. Leaf elongation rates during the quasi-linear phase of leaf expansion were significantly reduced for lower leaves of P0 plants. The final size of leaves L2–L12 was reduced. On the opposite, leaf elongation duration was not greatly affected by P treatments. Before the emergence of leaf 9, the reduction of individual leaf size was the main factor responsible for the reduced LAI in the P0 treatment. After this stage, the delayed leaf appearance accounted for a great part of the reduced LAI in the P0 treatment.


AMBIO: A Journal of the Human Environment | 2015

Stewardship to tackle global phosphorus inefficiency: The case of Europe

Paul J. A. Withers; Kimo C. van Dijk; Tina-Simone Schmid Neset; Thomas Nesme; O. Oenema; G. H. Rubæk; O.F. Schoumans; Bert Smit; Sylvain Pellerin

The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R stewardship (Re-align P inputs, Reduce P losses, Recycle P in bioresources, Recover P in wastes, and Redefine P in food systems) to help identify and deliver a range of integrated, cost-effective, and feasible technological innovations to improve P use efficiency in society and reduce Europe’s dependence on P imports. Their combined adoption facilitated by interactive policies, co-operation between upstream and downstream stakeholders (researchers, investors, producers, distributors, and consumers), and more harmonized approaches to P accounting would maximize the resource and environmental benefits and help deliver a more competitive, circular, and sustainable European economy. The case of Europe provides a blueprint for global P stewardship.


Plant and Soil | 1994

Evaluation of parameters describing the root system architecture of field grown maize plants (Zea mays L.)

Loïc Pagès; Sylvain Pellerin

The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded.Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed.Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.


Plant and Soil | 1992

Effect of mutual shading on the emergence of nodal roots and the root/shoot ratio of maize

Sabine Demotes-Mainard; Sylvain Pellerin

The effect of mutual shading on the root/shoot ratio and on the number of nodal roots of maize was studied. Plants of two varieties (Dea and LG2281) were grown in individual pots of 9 L, at three plant densities: 7.5, 11 and 15 plants m−2. A control experiment was carried out in order to study if root growth was affected by the small size of the pots. Maize plants (cv Dea) were grown at a low plant density (7.5 plants m−2) in pots of two different volumes (9 and 25 L respectively). In both experiments plants were watered every two hours with a nutrient solution. Some plants were sampled at five dates in the main experiment and the following data were recorded: foliar stage; root, stem and leaf dry weight; number of root primordia and number of emerged roots per phytomer. The final sampling date occurred at silking.Results of the control experiment showed that the root biomass was lower in small pots but the number of nodal roots per phytomer was not affected.Results of the main experiment showed that the total plant biomass and the root/shoot ratio were lower at high plant density. The number of emerged roots was strongly reduced on the upper phytomer (P8). This reduction was mainly due to a lower percentage of root primordia which elongated. A proposed interpretation is that the number of roots which emerge on upper phytomers is controlled by carbohydrate availability.


Plant and Soil | 2004

Leaf area establishment of a maize (Zea Mays L.) field crop under potassium deficiency

Lionel Jordan-Meille; Sylvain Pellerin

The effect of K deficiency on leaf area index (LAI) establishment of a maize field crop (Zea Mays L.) was studied. The experimental work was carried out in 2000 and 2001 on a long-term K fertilization trial. Three K fertilization regimes (K0, K1 and K4) have been applied since 1995, thus leading to contrasted levels of available K in soils (14, 23 and 44 µg exchangeable K per g of dry soil for the three fertilization regimes, respectively). The rate of leaf appearance, the leaf elongation rate (LER), the leaf elongation duration (LED), their final length and width and the number of senescent leaves were investigated. K concentrations in shoot tissue water were lower in K0 plants, whereas concentrations of Ca and Mg were higher. The LAI was reduced in the K0 treatment, mainly because of a slower rate of leaf appearance and a reduced final size of individual leaves. The reduced final length of individual leaves was almost entirely accounted for by a reduced LER during the quasi linear elongation phase. The LED was only slightly affected. A rough parallelism was observed between the relative reduction of leaf length and the relative reduction of plant water content during leaf elongation. Conversely, there was no evidence that leaf elongation was limited by carbohydrate availability in leaf growing zones. This suggests that K deficiency reduced LER probably because of altered plant-water relationships. On the whole, these results strengthen the idea that leaf growth is a key variable for analyzing, and later on modeling, crop growth under K deficiency.


Plant and Soil | 1990

Trajectory of the nodal roots of maize in fields with low mechanical constraints.

François Tardieu; Sylvain Pellerin

The trajectories of seventy three nodal roots of maize were studied in two fields with loose soil structure. Their projections on horizontal and vertical planes were traced. These roots tended to remain in a vertical plane. Trajectories were related to each other by an affine transformation. Thus, all the observed trajectories could be obtained by transformation of a common root archetype. The horizontal component of the trajectories was mainly in the first 0.4 m depth of soil, in the layer where soil structure was disturbed by ploughing. This horizontal component decreased with later appearance of roots (upper internodes), but differed between the two sites. The average soil temperature during the week following root appearance accounted for differences between internodes and sites. Lungleys algorithm, which is commonly used in modelling root trajectories, was tested. A general pattern could be simulated, but the model failed to fit the trajectories in the first 100 to 200 mm of soil. As a consequence, the initial angle between the stem and the root, which is a sensitive parameter in Lungleys model, did not account for differences between root trajectories.


Environmental and Experimental Botany | 1993

Carbon nutrition, root branching and elongation: can the present state of knowledge allow a predictive approach at a whole-plant level?

L.A.N. Aguirrezabal; Sylvain Pellerin; François Tardieu

Abstract Some of the experimental elements which are necessary for modelling the effects of plant carbon nutrition on the geometrical characteristics of root systems are reviewed. Reductions in intercepted irradiance or in the concentration of atmospheric CO 2 decrease the total root biomass and length. In addition to these global effects, carbon supply affects parameters which determine the architecture of the root system, such as the number of primary roots, their rate of branching, the individual elongation rates of different orders of branching and the elongation rates of branches which appear on apical vs basal parts of the supporting axis. Priorities in carbon allocation to different parts of the root system could be accounted for by simple models of source/sink relations. Through such effects, considerable changes in characteristics of the root system are possible, such as rooting depth or root density in different soil layers. However, progress in modelling is hampered by the relative inadequacy of current knowledge on the effect of carbon supply to the root system, which is still too general and too qualitative to allow predictive simulations of the resulting systems.


Plant and Soil | 1996

Evaluation in field conditions of a three-dimensional architectural model of the maize root system: Comparison of simulated and observed horizontal root maps

Sylvain Pellerin; Loïc Pagès

Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary.The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets.Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop.


Plant and Soil | 2011

Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages

Muhammad Nadeem; Alain Mollier; Christian Morel; Alain Vives; Loïc Prud’homme; Sylvain Pellerin

Adequate phosphorus (P) nutrition during early stages is critical for maize growth. Our objective was to evaluate the relative contribution of seed P reserves and exogenous P to maize nutrition during early growth stages. Seedlings were grown with labeled nutrient solution (32P). Seedlings were harvested periodically over the course of the three-week study. Initially, 87% and 77% of the total C and N in seeds were located in the endosperm, whereas 86% of seed P was located in the scutellum as phytate. Up to the 7th day after sowing, 96% of phytate was hydrolyzed. Hydrolyzed forms of P were temporarily stored in the seed before being translocated to growing organs, suggesting that the hydrolysis of phytate was not a limiting step for P supply to seedlings. Significant P uptake by roots was observed from the 5th day after sowing on. Both sources of P supplied roots and leaves, with a slightly higher proportion of P from seed reserves going to leaves rather than to roots. Of total seed P, 60% and 92% was exported towards newly growing seedlings till 7th and 17th days after sowing and ceased to be a significant source of P for growth thereafter. We conclude that although both P supply processes overlap in time, seed P was the main P source during early growth stages.

Collaboration


Dive into the Sylvain Pellerin's collaboration.

Top Co-Authors

Avatar

Alain Mollier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christian Morel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laure Bamière

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurent Augusto

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Lenaïc Pardon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Helene Jeuffroy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. Doreau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sylvie Recous

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Chenu

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Katja Klumpp

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge