Sylvain Pichat
École normale supérieure de Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvain Pichat.
Earth and Planetary Science Letters | 2003
Sylvain Pichat; Chantal Douchet; Francis Albarède
The carbonate fraction of sediment core ODP 849, leg 138, located in the eastern equatorial Pacific, mostly consisting of coccoliths, was separated and analyzed for its Zn isotopic composition. The overall variation in Zn isotopic composition, as determined by multiple-collector, magnetic-sector, inductively coupled plasma mass spectrometry, was found to be on the order of 1‰ (expressed in δ66Zn, where δxZn=[(xZn/64Zn)sample/(xZn/64Zn)standard−1]×103 and x=66, 67 or 68) over the last 175 ka. The analytical precision was 0.04‰ and the overall reproducibility was usually better than 0.07‰. The Zn isotopic composition signal exhibits several marked peaks and a high-frequency variability. A periodogram of the δ66Zn signal showed two periodicities of 35.2 and 21.2 ka. We suggest that the latter is caused by the precession of the Earth’s axis of rotation. The periodogram exhibits a minimum at 41.1 ka, thus showing that the Zn isotopic composition is independent of the obliquity in the eastern equatorial Pacific. The range of δ66Zn values observed for the carbonate fraction of ODP 849 overlaps with the range observed for Fe–Mn nodules in the world’s oceans, which suggests that seawater/carbonate Zn isotope fractionation is weak. We therefore assume that most of the Zn isotope variability is a result of the selective entrainment of the light isotopes by organic matter in the surface ocean. The ODP 849 δ66Zn record seems to follow the changes in the insolation cycles. Changes in the late summer/fall equatorial insolation modulate the intensity of the equatorial upwelling, hence the mixing between deep and surface waters. We propose that during decreased summer/fall equatorial insolation, when a steep thermocline can develop (El Nino-like conditions), the surface waters cannot be replenished by deep waters and become depleted in the lighter Zn isotopes by biological activity, thus resulting in the progressive increase of the δ66Zn values of the carbonate shells presumably in equilibrium with surface seawater.
Environmental Science & Technology | 2011
Anne-Marie Aucour; Sylvain Pichat; M. R. Macnair; Philippe Oger
Zn isotope fractionation may provide new insights into Zn uptake, transport and storage mechanisms in plants. It was investigated here in the Zn hyperaccumulator Arabidopsis halleri and the nonaccumulator A. petraea. Plant growth on hydroponic solution allowed us to measure the isotope fractionation between source Zn (with Zn(2+) as dominant form), shoot and root. Zn isotope mass balance yields mean isotope fractionation between plant and source Zn Δ(66)Zn(in-source) of -0.19 ± 0.20‰ in the nonaccumulator and of -0.05 ± 0.12‰ in the hyperaccumulator. The isotope fractionation between shoot Zn and bulk Zn incorporated (Δ(66)Zn(shoot-in)) differs between the nonaccumulator and the hyperaccumulator and is function of root-shoot translocation (as given by mass ratio between shoot Zn and bulk plant Zn). The large isotope fractionation associated with sequestration in the root (0.37‰) points to the binding of Zn(2+) with a high affinity ligand in the root cell. We conclude that Zn stable isotopes may help to estimate underground and aerial Zn storage in plants and be useful in studying extracellular and cellular mechanisms of sequestration in the root.
Science of The Total Environment | 2015
Z. Fekiacova; Sophie Cornu; Sylvain Pichat
Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case.
Geophysical Research Letters | 2015
Pierre Burckel; Claire Waelbroeck; Jeanne Gherardi; Sylvain Pichat; Helge W Arz; Joerg Lippold; Trond Dokken; François Thil
During the last glacial period, Greenlands climate shifted between cold (stadial) and warm (interstadial) phases that were accompanied by ocean circulation changes characterized by reduced Atlantic Meridional Overturning Circulation (AMOC) during stadials. Here we present new data from the western tropical Atlantic demonstrating that AMOC slowdowns preceded some of the large South American rainfall events that took place during stadials. Based on 231Pa/230Th and Ti/Ca measurements in the same sediment core, we determine that the AMOC started to slowdown 1420 ± 250 and 690 ± 180 (1σ) years before the onset of two large precipitation events associated with Heinrich stadials. Our results bring unprecedented evidence that AMOC changes could be at the origin of the large precipitation events observed in tropical South America during Heinrich stadials. In addition, we propose a mechanism explaining the differences in the extent and timing of AMOC slowdowns associated with shorter and longer stadials.
Metallomics | 2016
Victor P. Bondanese; Aline Lamboux; Mélanie Simon; Jérôme E. Lafont; Emmanuelle Albalat; Sylvain Pichat; Jean-Marc Vanacker; Philippe Telouk; Vincent Balter; Philippe Oger; Francis Albarède
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, with increasing incidence worldwide. The unrestrained proliferation of tumour cells leads to tumour hypoxia which in turn promotes cancer aggressiveness. While changes in the concentration of copper (Cu) have long been observed upon cancerization, we have recently reported that the isotopic composition of copper is also altered in several types of cancer. In particular, we showed that in hepatocellular carcinoma, tumour tissue contains heavier copper compared to the surrounding parenchyma. However, the reasons behind such isotopic signature remained elusive. Here we show that hypoxia causes heavy copper enrichment in several human cell lines. We also demonstrate that this effect of hypoxia is pH, HIF-1 and -2 independent. Our data identify a previously unrecognized cellular process associated with hypoxia, and suggests that in vivo tumour hypoxia determines copper isotope fractionation in HCC and other solid cancers.
Scientific Reports | 2017
Jean-Loup Cadiou; Sylvain Pichat; Victor P. Bondanese; Alexandre Soulard; Toshiyuki Fujii; Francis Albarède; Philippe Oger
Copper isotopic composition is altered in cancerous compared to healthy tissues. However, the rationale for this difference is yet unknown. As a model of Cu isotopic fractionation, we monitored Cu uptake in Saccharomyces cerevisiae, whose Cu import is similar to human. Wild type cells are enriched in 63Cu relative to 65Cu. Likewise, 63Cu isotope enrichment in cells without high-affinity Cu transporters is of slightly lower magnitude. In cells with compromised Cu reductase activity, however, no isotope fractionation is observed and when Cu is provided solely in reduced form for this strain, copper is enriched in 63Cu like in the case of the wild type. Our results demonstrate that Cu isotope fractionation is generated by membrane importers and that its amplitude is modulated by Cu reduction. Based on ab initio calculations, we propose that the fractionation may be due to Cu binding with sulfur-rich amino acids: methionine and cysteine. In hepatocellular carcinoma (HCC), lower expression of the STEAP3 copper reductase and heavy Cu isotope enrichment have been reported for the tumor mass, relative to the surrounding tissue. Our study suggests that copper isotope fractionation observed in HCC could be due to lower reductase activity in the tumor.
Chemical Geology | 2009
Frederic Moynier; Sylvain Pichat; Marie-Laure Pons; David A. Fike; Vincent Balter; Francis Albarède
Nature Geoscience | 2012
Jörg Lippold; Yiming Luo; Roger Francois; Susan E. Allen; Jeanne Gherardi; Sylvain Pichat; Ben M Hickey; Hartmut Schulz
Chemical Geology | 2011
Charlotte Weinstein; Frederic Moynier; Kun Wang; Randal C. Paniello; Julien Foriel; Jeffrey G. Catalano; Sylvain Pichat
Geochimica et Cosmochimica Acta | 2012
Randal C. Paniello; Frederic Moynier; Pierre Beck; Jean-Alix Barrat; Frank A. Podosek; Sylvain Pichat