Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvia Cardoso Leão is active.

Publication


Featured researches published by Sylvia Cardoso Leão.


European Respiratory Journal | 2013

The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study

Wouter Hoefsloot; Jakko van Ingen; Claire Andrejak; Kristian Ängeby; Rosine Bauriaud; Pascale Bemer; Natalie Beylis; Martin J. Boeree; Juana Cacho; Violet Chihota; Erica Chimara; Gavin Churchyard; Raquel Cias; Rosa Daza; Charles L. Daley; P. N. Richard Dekhuijzen; Diego Domingo; Francis Drobniewski; Jaime Esteban; Maryse Fauville-Dufaux; Dorte Bek Folkvardsen; Noel Gibbons; Enrique Gómez-Mampaso; Rosa Gonzalez; Harald Hoffmann; Po-Ren Hsueh; Alexander Indra; Tomasz Jagielski; Frances Jamieson; Mateja Janković

A significant knowledge gap exists concerning the geographical distribution of nontuberculous mycobacteria (NTM) isolation worldwide. To provide a snapshot of NTM species distribution, global partners in the NTM-Network European Trials Group (NET) framework (www.ntm-net.org), a branch of the Tuberculosis Network European Trials Group (TB-NET), provided identification results of the total number of patients in 2008 in whom NTM were isolated from pulmonary samples. From these data, we visualised the relative distribution of the different NTM found per continent and per country. We received species identification data for 20 182 patients, from 62 laboratories in 30 countries across six continents. 91 different NTM species were isolated. Mycobacterium avium complex (MAC) bacteria predominated in most countries, followed by M. gordonae and M. xenopi. Important differences in geographical distribution of MAC species as well as M. xenopi, M. kansasii and rapid-growing mycobacteria were observed. This snapshot demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents. These differences in species distribution may partly determine the frequency and manifestations of pulmonary NTM disease in each geographical location. Species distribution among nontuberculous mycobacteria isolates from pulmonary specimens is geographically diverse http://ow.ly/npu6r


Journal of Clinical Microbiology | 2008

Molecular Characterization of Mycobacterium massiliense and Mycobacterium bolletii in Isolates Collected from Outbreaks of Infections after Laparoscopic Surgeries and Cosmetic Procedures

Cristina Viana-Niero; Karla Valéria Batista Lima; Maria Luiza Lopes; Michelle Christiane da Silva Rabello; Lourival Rodrigues Marsola; Vânia Cristina Ribeiro Brilhante; Alan Mitchel Durham; Sylvia Cardoso Leão

ABSTRACT An outbreak of infections affecting 311 patients who had undergone different invasive procedures occurred in 2004 and 2005 in the city of Belém, in the northern region of Brazil. Sixty-seven isolates were studied; 58 were from patients who had undergone laparoscopic surgeries, 1 was from a patient with a postinjection abscess, and 8 were from patients who had undergone mesotherapy. All isolates were rapidly growing nonpigmented mycobacteria and presented a pattern by PCR-restriction enzyme analysis of the hsp65 gene with BstEII of bands of 235 and 210 bp and with HaeIII of bands of 200, 70, 60, and 50 bp, which is common to Mycobacterium abscessus type 2, Mycobacterium bolletii, and Mycobacterium massiliense. hsp65 and rpoB gene sequencing of a subset of 20 isolates was used to discriminate between these three species. hsp65 and rpoB sequences chosen at random from 11 of the 58 isolates from surgical patients and the postinjection abscess isolate presented the highest degrees of similarity with the corresponding sequences of M. massiliense. In the same way, the eight mesotherapy isolates were identified as M. bolletii. Molecular typing by pulsed-field gel electrophoresis (PFGE) grouped all 58 surgical isolates, while the mesotherapy isolates presented three different PFGE patterns and the postinjection abscess isolate showed a unique PFGE pattern. In conclusion, molecular techniques for identification and typing were essential for the discrimination of two concomitant outbreaks and one case, the postinjection abscess, not related to either outbreak, all of which were originally attributed to a single strain of M. abscessus.


Journal of Clinical Microbiology | 2009

Characterization of Mycobacteria from a Major Brazilian Outbreak Suggests that Revision of the Taxonomic Status of Members of the Mycobacterium chelonae-M. abscessus Group Is Needed

Sylvia Cardoso Leão; Enrico Tortoli; Cristina Viana-Niero; Suely Yoko Mizuka Ueki; Karla Valéria Batista Lima; Maria Luiza Lopes; Jesús Yubero; Maria Carmen Menendez; Maria Jesus Garcia

ABSTRACT An outbreak of postsurgical infections caused by rapidly growing mycobacteria has been ongoing in Brazil since 2004. The degrees of similarity of the rpoB and hsp65 sequences from the clinical isolates and the corresponding sequences from both the Mycobacterium massiliense and the M. bolletii type strains were above the accepted limit for interspecies variability, leading to conflicting identification results. Therefore, an extensive characterization of members of the M. chelonae-M. abscessus group was carried out. The M. abscessus, M. chelonae, M. immunogenum, M. massiliense, and M. bolletii type strains and a subset of clinical isolates were analyzed by biochemical tests, high-performance liquid chromatography, drug susceptibility testing, PCR-restriction enzyme analysis of hsp65 (PRA-hsp65), rpoB, and hsp65 gene sequencing and analysis of phylogenetic trees, DNA-DNA hybridization (DDH), and restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene (RFLP-16S rRNA). The clinical isolates and the M. abscessus, M. massiliense, and M. bolletii type strains could not be separated by phenotypic tests and were grouped in the phylogenetic trees obtained. The results of DDH also confirmed the >70% relatedness of the clinical isolates and the M. abscessus, M. massiliense, and M. bolletii type strains; and indistinguishable RFLP-16S rRNA patterns were obtained. On the contrary, the separation of clinical isolates and the M. abscessus, M. massiliense, and M. bolletii type strains from M. chelonae and M. immunogenum was supported by the results of PRA-hsp65, DDH, and RFLP-16S rRNA and by the rpoB and hsp65 phylogenetic trees. Taken together, these results led to the proposition that M. abscessus, M. massiliense, and M. bolletii represent a single species, that of M. abscessus. Two subspecies are also proposed, M. abscessus subsp. abscessus and M. abscessus subsp. massiliense, and these two subspecies can be distinguished by two different PRA-hsp65 patterns, which differ by a single HaeIII band, and by differences in their rpoB (3.4%) and hsp65 (1.3%) sequences.


Journal of Clinical Microbiology | 2011

Multilocus Sequence Analysis and rpoB Sequencing of Mycobacterium abscessus (Sensu Lato) Strains

Edouard Macheras; Anne-Laure Roux; Sylvaine Bastian; Sylvia Cardoso Leão; Moises Palaci; Valérie Sivadon-Tardy; Cristina Gutierrez; Elvira Richter; Sabine Rüsch-Gerdes; Gaby E. Pfyffer; Thomas Bodmer; Emmanuelle Cambau; Jean-Louis Gaillard; Beate Heym

ABSTRACT Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536T, M. massiliense CIP 108297T, and M. bolletii CIP 108541T) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies.


BMC Microbiology | 2008

Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns.

Erica Chimara; Lucilaine Ferrazoli; Suely Yoko Misuka Ueky; Maria Conceição Martins; Alan Mitchel Durham; Robert D. Arbeit; Sylvia Cardoso Leão

BackgroundIdentification of nontuberculous mycobacteria (NTM) based on phenotypic tests is time-consuming, labor-intensive, expensive and often provides erroneous or inconclusive results. In the molecular method referred to as PRA-hsp65, a fragment of the hsp65 gene is amplified by PCR and then analyzed by restriction digest; this rapid approach offers the promise of accurate, cost-effective species identification. The aim of this study was to determine whether species identification of NTM using PRA-hsp65 is sufficiently reliable to serve as the routine methodology in a reference laboratory.ResultsA total of 434 NTM isolates were obtained from 5019 cultures submitted to the Institute Adolpho Lutz, Sao Paulo Brazil, between January 2000 and January 2001. Species identification was performed for all isolates using conventional phenotypic methods and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing a 441 bp fragment of hsp65. Phenotypic evaluation and PRA-hsp65 were concordant for 321 (74%) isolates. These assignments were presumed to be correct. For the remaining 113 discordant isolates, definitive identification was based on sequencing a 441 bp fragment of hsp65. PRA-hsp65 identified 30 isolates with hsp65 alleles representing 13 previously unreported PRA-hsp65 patterns. Overall, species identification by PRA-hsp65 was significantly more accurate than by phenotype methods (392 (90.3%) vs. 338 (77.9%), respectively; p < .0001, Fishers test). Among the 333 isolates representing the most common pathogenic species, PRA-hsp65 provided an incorrect result for only 1.2%.ConclusionPRA-hsp65 is a rapid and highly reliable method and deserves consideration by any clinical microbiology laboratory charged with performing species identification of NTM.


Microbes and Infection | 2008

Emergence of nosocomial Mycobacterium massiliense infection in Goias, Brazil

Alessandra Marques Cardoso; Eduardo Martins de Sousa; Cristina Viana-Niero; Fernando Bonfim de Bortoli; Zilah Cândida das Neves; Sylvia Cardoso Leão; Ana Paula Junqueira-Kipnis; André Kipnis

A cluster of surgical site infection cases after arthroscopic and laparoscopic procedures occurred between 2005 and 2007 in Goiânia, in the central region of Brazil. Nontuberculous mycobacteria (NTM) were isolated from samples (exudates from cutaneous abscesses) from 18 patients of seven private hospitals. There were no reports of post-surgical arthroscopic and laparoscopic mycobacterial infections in Goiânia apart from this period. The 18 isolates were identified as Mycobacterium massiliense by PCR-restriction digestion of the hsp65 gene, pulsed-field gel electrophoresis (PFGE) comparisons, and rpoB partial gene sequencing. All isolates were typed as a single clone, indicating that they have the same origin, which suggests a common source of infection for all patients.


Future Microbiology | 2010

Epidemic of surgical-site infections by a single clone of rapidly growing mycobacteria in Brazil

Sylvia Cardoso Leão; Cristina Viana-Niero; Cristianne Kayoko Matsumoto; Karla Valéria Batista Lima; Maria Luiza Lopes; Moises Palaci; David Jamil Hadad; Solange Alves Vinhas; Rafael Silva Duarte; Maria Cristina S. Lourenço; André Kipnis; Zilah Cândida das Neves; Betina Mendez Alcântara Gabardo; Marta Osório Ribeiro; Ludmila Baethgen; Denise Brandão de Assis; Geraldine Madalosso; Erica Chimara; Margareth Pretti Dalcolmo

AIM Our aim is to investigate if the clusters of postsurgical mycobacterial infections, reported between 2004 and 2008 in seven geographically distant states in Brazil, were caused by a single mycobacterial strain. MATERIALS & METHODS Available information from 929 surgical patients was obtained from local health authorities. A total of 152 isolates from surgical patients were identified by PCR restriction enzyme analysis of the hsp65 gene (PRA-hsp65) and sequencing of the rpoB gene. Isolates were typed by pulsed-field gel electrophoresis (PFGE) using two restriction enzymes, DraI and AseI. A total of 15 isolates not related to surgical cases were analyzed for comparison. RESULTS All isolates were identified as Mycobacterium abscessus ssp. massiliense. Isolates from surgical patients and one sputum isolate grouped in a single PFGE cluster, composed of two closely related patterns, with one band difference. A total of 14 other isolates unrelated to surgical cases showed distinctive PFGE patterns. CONCLUSION A particular strain of M. abscessus ssp. massiliense was associated with a prolonged epidemic of postsurgical infections in seven Brazilian states, suggesting that this strain may be distributed in Brazilian territory and better adapted to cause surgical-site infections.


International Journal of Systematic and Evolutionary Microbiology | 2016

Emended description of mycobacterium abscessus mycobacterium abscessus subsp. Abscessus and mycobacterium abscessus subsp. bolletii and designation of mycobacterium abscessus subsp. massiliense comb. nov.

Enrico Tortoli; Thomas A. Kohl; Barbara A. Brown-Elliott; Alberto Trovato; Sylvia Cardoso Leão; Maria Jesus Garcia; Sruthi Vasireddy; Christine Y. Turenne; David E. Griffith; Julie V. Philley; Rossella Baldan; S. Campana; Lisa Cariani; Carla Colombo; G. Taccetti; Antonio Teri; Stefan Niemann; Richard J. Wallace; Daniela Maria Cirillo

The taxonomic position of members of the Mycobacterium abscessus complex has been the subject of intensive investigation and, in some aspects confusion, in recent years as a result of varying approaches to genetic data interpretation. Currently, the former species Mycobacterium massiliense and Mycobacterium bolletii are grouped together as Mycobacterium abscessus subsp. bolletii. They differ greatly, however, as the former M. bolletii has a functional erm(41) gene that confers inducible resistance to macrolides, the primary therapeutic antimicrobials for M. abscessus, while in the former M. massiliense the erm(41) gene is non-functional. Furthermore, previous whole genome studies of the M. abscessus group support the separation of M. bolletii and M. massiliense. To shed further light on the population structure of Mycobacterium abscessus, 43 strains and three genomes retrieved from GenBank were subjected to pairwise comparisons using three computational approaches: verage ucleotide dentity, enome to enome istance and single nucleotide polymorphism analysis. The three methods produced overlapping results, each demonstrating three clusters of strains corresponding to the same number of taxonomic entities. The distances were insufficient to warrant distinction at the species level, but met the criteria for differentiation at the subspecies level. Based on prior erm(41)-related phenotypic data and current genomic data, we conclude that the species M. abscessus encompasses, in adjunct to the presently recognized subspecies M. abscessus subsp. abscessus and M. abscessus subsp. bolletii, a third subspecies for which we suggest the name M. abscessus subsp. massiliense comb. nov. (type strain CCUG 48898T=CIP 108297T=DSM 45103T=KCTC 19086T).


Immunology | 1999

Characterization of the memory/activated T cells that mediate the long-lived host response against tuberculosis after bacillus Calmette–Guérin or DNA vaccination

Célio Lopes Silva; Vânia Luiza Deperon Bonato; V.M.F. Lima; Lúcia Helena Faccioli; Sylvia Cardoso Leão

The memory/activated T cells, which mediate the long‐lived host response against tuberculosis, in mice immunized with either bacillus Calmette–Guérin (BCG) or mycobacterium heat‐shock protein 65 (hsp 65) antigen expressed from plasmid DNA (DNA‐hsp 65), were characterized. Protection against Mycobacterium tuberculosis challenge by DNA‐hsp 65 vaccination was associated with the presence of lymph node T‐cell populations in which CD8+/CD44hi interferon‐γ (IFN‐γ)‐producing/cytotoxic cells were prominent even after 8 or 15 months of plasmid DNA‐mediated immunizations, whereas after BCG vaccination the majority were CD4+/CD44lo IFN‐γ‐producing T cells. When the cells were separated into CD4+CD8− and CD8+CD4− and then into CD44hi and CD44lo types, CD44lo cells were essentially unable to transfer protection in adoptive transfer experiments, the most protective CD44hi cells were CD8+CD4− and those from DNA‐vaccinated mice were much more protective than those from BCG‐immunized mice. The frequency of protective T cells and the level of protection were increased up to 8 months and decreased after 15 months following DNA or BCG immunizations.


Journal of Clinical Microbiology | 2006

Isolation of the genome sequence strain Mycobacterium avium 104 from multiple patients over a 17-year period

Kathleen L. Horan; Robert Freeman; Kris M. Weigel; Makeda Semret; Stacy Pfaller; Terry C. Covert; Dick van Soolingen; Sylvia Cardoso Leão; Marcel A. Behr; Gerard A. Cangelosi

ABSTRACT The genome sequence strain 104 of the opportunistic pathogen Mycobacterium avium was isolated from an adult AIDS patient in Southern California in 1983. Isolates of non-paratuberculosis M. avium from 207 other patients in Southern California and elsewhere were examined for genotypic identity to strain 104. This process was facilitated by the use of a novel two-step approach. In the first step, all 208 strains in the sample were subjected to a high-throughput, large sequence polymorphism (LSP)-based genotyping test, in which DNA from each strain was tested by PCR for the presence or absence of 4 hypervariable genomic regions. Nineteen isolates exhibited an LSP type that resembled that of strain 104. This subset of 19 isolates was then subjected to high-resolution repetitive sequence-based PCR typing, which identified 10 isolates within the subset that were genotypically identical to strain 104. These isolates came from 10 different patients at 5 clinical sites in the western United States, and they were isolated over a 17-year time span. Therefore, the sequenced genome of M. avium strain 104 has been associated with disease in multiple patients in the western United States. Although M. avium is known for its genetic plasticity, these observations also show that strains of the pathogen can be genotypically stable over extended time periods.

Collaboration


Dive into the Sylvia Cardoso Leão's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Viana-Niero

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Denise de Freitas

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Maria Jesus Garcia

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Silva Duarte

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Jorge Sampaio

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge