Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Dinant is active.

Publication


Featured researches published by Sylvie Dinant.


Plant Physiology | 2003

Diversity of the Superfamily of Phloem Lectins (Phloem Protein 2) in Angiosperms

Sylvie Dinant; Anna M. Clark; Yanmin Zhu; Françoise Vilaine; Jean-Christophe Palauqui; Chantal Kusiak; Gary A. Thompson

Phloem protein 2 (PP2) is one of the most abundant and enigmatic proteins in the phloem sap. Although thought to be associated with structural P-protein, PP2 is translocated in the assimilate stream where its lectin activity or RNA-binding properties can exert effects over long distances. Analyzing the diversity of these proteins in vascular plants led to the identification ofPP2-like genes in species from 17 angiosperm and gymnosperm genera. This wide distribution of PP2 genes in the plant kingdom indicates that they are ancient and common in vascular plants. Their presence in cereals and gymnosperms, both of which lack structural P-protein, also supports a wider role for these proteins. Within this superfamily, PP2 proteins have considerable size polymorphism. This is attributable to variability in the length of the amino terminus that extends from a highly conserved domain. The conserved PP2 domain was identified in the proteins encoded by six genes from several cucurbits, celery (Apium graveolens), and Arabidopsis that are specifically expressed in the sieve element-companion cell complex. The acquisition of additional modular domains in the amino-terminal extensions of other PP2-like proteins could reflect divergence from its phloem function.


Plant Molecular Biology | 2005

Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens.

Fanchon Divol; Françoise Vilaine; Sandra Thibivilliers; Joelle Amselem; Jean-Christophe Palauqui; Chantal Kusiak; Sylvie Dinant

Little is known about the molecular processes involved in the phloem response to aphid feeding. We investigated molecular responses to aphid feeding on celery (Apium graveolenscv. Dulce) plants infested with the aphid Myzus persicae, as a means of identifying changes in phloem function. We used celery as our model species as it is easy to separate the phloem from the surrounding tissues in the petioles of mature leaves of this species. We generated a total of 1187 expressed sequence tags (ESTs), corresponding to 891 non-redundant genes. We analysed these ESTs in silico after cDNA macroarray hybridisation. Aphid feeding led to significant increase in RNA accumulation for 126 different genes. Different patterns of deregulation were observed, including transitory or stable induction 3 or 7 days after infestation. The genes affected belonged to various functional categories and were induced systemically in the phloem after infestation. In particular, genes involved in cell wall modification, water transport, vitamin biosynthesis, photosynthesis, carbon assimilation and nitrogen and carbon mobilisation were up-regulated in the phloem. Further analysis of the response in the phloem or xylem suggested that a component of the response was developed more specifically in the phloem. However, this component was different from the stress responses in the phloem driven by pathogen infection. Our results indicate that the phloem is actively involved in multiple adjustments, recruiting metabolic pathways and in structural changes far from aphid feeding sites. However, they also suggest that the phloem displays specific mechanisms that may not be induced in other tissues.


Comptes Rendus Biologies | 2010

Compatible plant-aphid interactions: How aphids manipulate plant responses

Philippe Giordanengo; Laurence Brunissen; Christine Rustérucci; Charles Vincent; Aart J. E. van Bel; Sylvie Dinant; Christine Girousse; Mireille Faucher; Jean-Louis Bonnemain

To access phloem sap, aphids have developed a furtive strategy, their stylets progressing towards sieve tubes mainly through the apoplasmic compartment. Aphid feeding requires that they overcome a number of plant responses, ranging from sieve tube occlusion and activation of phytohormone-signalling pathways to expression of anti-insect molecules. In addition to bypassing plant defences, aphids have been shown to affect plant primary metabolism, which could be a strategy to improve phloem sap composition in nutrients required for their growth. During compatible interactions, leading to successful feeding and reproduction, aphids cause alterations in their host plant, including morphological changes, modified resource allocation and various local as well as systemic symptoms. Repeated salivary secretions injected from the first probe in the epidermal tissue up to ingestion of sieve-tube sap may play a crucial role in the compatibility between the aphid and the plant.


Comptes Rendus Biologies | 2010

The phloem pathway: new issues and old debates.

Sylvie Dinant; Rémi Lemoine

The phloem is a central actor in plant development and nutrition, providing nutrients and energy to sink organs and integrating interorgan communication. A comprehensive picture of the molecules trafficking in phloem sap is being made available, with recent surveys of proteins, RNAs, sugars, and other metabolites, some of which are potentially acting as signals. In this review, we focus on recent breakthroughs on phloem transport and signalling. A case study was phloem loading of sucrose, acting both as a nutrient and as a signal, whose activity was shown to be tightly regulated. Recent advances also described actors of macromolecular trafficking in sieve elements, including chaperones and RNA binding proteins, involved potentially in the formation of ribonucleoprotein complexes. Likewise, long distance signalling appeared to integrate electrical potential waves, calcium bursts and potentially the generation of reactive oxygen species. The ubiquitin-proteasome system was also proposed to be on action in sieve elements for signalling and protein turnover. Surprisingly, several basic processes of phloem physiology are still under debate. Hence, the absence in phloem sap of reducing sugar species, such as hexoses, was recently challenged with observations based on an analysis of the sap from Ranunculaceae and Papaveraceae. The possibility that protein synthesis might occur in sieve elements was again questioned with the identification of components of the translational machinery in Pumpkin phloem sap. Altogether, these new findings strengthen the idea that phloem is playing a central role in interorgan nutrient exchanges and communication and demonstrate that the ways by which this is achieved can obey various patterns among species.


Plant Physiology | 2010

Binding Properties of the N-Acetylglucosamine and High-Mannose N-Glycan PP2-A1 Phloem Lectin in Arabidopsis

Julie Beneteau; Denis Renard; Laurent Marché; Elise Douville; Laurence Lavenant; Yvan Rahbé; Didier Dupont; Françoise Vilaine; Sylvie Dinant

Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N′,N″-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a β-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects.


Trends in Plant Science | 2001

Plasmodesmata and plant cytoskeleton

Rachid Aaziz; Sylvie Dinant; Bernard L. Epel

Plant cell-to-cell communication is achieved by membranous conduits called plasmodesmata, which bridge the cytoplasm of neighboring cells. A growing body of immunolocalization data shows an association of the cytoskeleton machinery with plasmodesmata. The role of the cytoskeleton in the plasmodesmata-mediated transport has been well documented for virus movement. Because viruses are known to exploit existing host pathways and because the cytoskeleton is involved in intracellular trafficking, the cytoskeleton is thought to drive and target macromolecules to plasmodesmata. It is this link between plasmodesmata and the cytoskeleton that will be described here.


Plant Cell and Environment | 2012

Soluble and filamentous proteins in Arabidopsis sieve elements

Brigitte Batailler; Thomas Lemaître; Françoise Vilaine; Christian Sanchez; Denis Renard; Thibaud Cayla; Julie Beneteau; Sylvie Dinant

Phloem sieve elements are highly differentiated cells involved in the long-distance transport of photoassimilates. These cells contain both aggregated phloem-proteins (P-proteins) and soluble proteins, which are also translocated by mass flow. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to carry out a proteomic survey of the phloem exudate of Arabidopsis thaliana, collected by the ethylenediaminetetraacetic acid (EDTA)-facilitated method. We identified 287 proteins, a large proportion of which were enzymes involved in the metabolic precursor generation and amino acid synthesis, suggesting that sieve tubes display high levels of metabolic activity. RNA-binding proteins, defence proteins and lectins were also found. No putative P-proteins were detected in the EDTA-exudate fraction, indicating a lack of long-distance translocation of such proteins in Arabidopsis. In parallel, we investigated the organization of P-proteins, by high-resolution transmission electron microscopy, and the localization of the phloem lectin PP2, a putative P-protein component, by immunolocalization with antibodies against PP2-A1. Transmission electron microscopy observations of P-proteins revealed bundles of filaments resembling strings of beads. PP2-A1 was found weakly associated with these structures in the sieve elements and bound to plastids. These observations suggest that PP2-A1 is anchored to P-proteins and organelles rather than being a structural component of P-proteins.


Molecular Plant-microbe Interactions | 2010

Phloem Protein Partners of Cucurbit aphid borne yellows virus: Possible Involvement of Phloem Proteins in Virus Transmission by Aphids

B. Bencharki; S. Boissinot; S. Revollon; Véronique Ziegler-Graff; M. Erdinger; L. Wiss; Sylvie Dinant; Denis Renard; M. Beuve; C. Lemaitre-Guillier; V. Brault

Poleroviruses are phytoviruses strictly transmitted by phloem-feeding aphids in a circulative and nonpropagative mode. During ingestion, aphids sample virions in sieve tubes along with sap. Therefore, any sap protein bound to virions will be acquired by the insects and could potentially be involved in the transmission process. By developing in vitro virus-overlay assays on sap proteins collected from cucumber, we observed that approximately 20 proteins were able to bind to purified particles of Cucurbit aphid borne yellows virus (CABYV). Among them, eight proteins were identified by mass spectrometry. The role of two candidates belonging to the PP2-like family (predominant lectins found in cucurbit sap) in aphid transmission was further pursued by using purified orthologous PP2 proteins from Arabidopsis. Addition of these proteins to the virus suspension in the aphid artificial diet greatly increased virus transmission rate. This shift was correlated with an increase in the number of viral genomes in insect cells and with an increase of virion stability in vitro. Surprisingly, increase of the virus transmission rate was also monitored after addition of unrelated proteins in the aphid diet, suggesting that any soluble protein at sufficiently high concentration in the diet and acquired together with virions could stimulate virus transmission.


Trends in Plant Science | 2008

Gene expression profiling: keys for investigating phloem functions

Rozenn Le Hir; Julie Beneteau; Catherine Bellini; Françoise Vilaine; Sylvie Dinant

Phloem is the major route for transport of carbohydrates, amino acids, and other nutrients from source to sink tissues. Hormones, mRNAs, small RNAs and proteins also are transported by the phloem, and potentially play pivotal roles in communication between organs to coordinate plant development and physiology. A comprehensive understanding of the mechanisms involved in phloem transport and signalling is still lacking. Recent transcript profiling in several plant species has provided new insights to phloem-specialized functions. Here, we review conclusions regarding the unique functions of the phloem and discuss putative roles for mRNAs and small RNA species in long-distance signalling.


Molecular Breeding | 1997

Coat protein gene-mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains.

Sylvie Dinant; Brigitte Maisonneuve; Josette Albouy; Yves Chupeau; Marie-Christine Chupeau; Yannick Bellec; Fabienne Gaudefroy; Chantal Kusiak; Sylvie Souche; Christophe Robaglia; Hervé Lot

Lettuce mosaic potyvirus (LMV) can be very destructive on lettuce crops worldwide. The LMV strain 0 (LMV-0) coat protein (CP) gene was engineered for expression in plants. It was introduced into three susceptible cultivars of Lactuca sativa using an improved procedure for transformation and regeneration of lettuce, by co-cultivation of leaf explants with Agrobacterium tumefaciens. Several transformants accumulated detectable levels of LMV CP. The R1 progeny of twelve R0 transformants (four plants per cultivar) with T-DNA integration at one single locus, was studied for protection against LMV. The progeny from five R0 transformants showed resistance to LMV-0, with the effectiveness of resistance depending on the development stage of the plants at the time of inoculation. The R1 and R2 progeny from one of these R0 transformants, Cocarde-9a, were more extensively analysed. The homozygous but not the hemizygous R1 plants displayed protection to LMV-0. The R2 progeny from one homozygous R1 plant were shown to be resistant to infection by LMV-0 and other LMV strains. As previously observed in other cases of potyvirus sequence-mediated protection, a phenomenon of recovery was observed in some plants, as well as complete resistance. However, this recovery phenotype was not always maintained, as opposed to the previous described cases, leading to a late progression of viral infection.

Collaboration


Dive into the Sylvie Dinant's collaboration.

Top Co-Authors

Avatar

Françoise Vilaine

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Chantal Kusiak

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Denis Renard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Fanchon Divol

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Julie Beneteau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bertrand Hirel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Quilleré

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Palauqui

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Josette Albouy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrick Armengaud

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge