Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Lierman is active.

Publication


Featured researches published by Sylvie Lierman.


Nature Biotechnology | 2012

Tracking the progression of the human inner cell mass during embryonic stem cell derivation

Thomas O'Leary; Björn Heindryckx; Sylvie Lierman; David van Bruggen; Jelle J. Goeman; Mado Vandewoestyne; Dieter Deforce; Susana Lopes; Petra De Sutter

The different pluripotent states of mouse embryonic stem cells (ESCs) in vitro have been shown to correspond to stages of mouse embryonic development. For human cells, little is known about the events that precede the generation of ESCs or whether they correlate with in vivo developmental stages. Here we investigate the cellular and molecular changes that occur during the transition from the human inner cell mass (ICM) to ESCs in vitro. We demonstrate that human ESCs originate from a post-ICM intermediate (PICMI), a transient epiblast-like structure that has undergone X-inactivation in female cells and is both necessary and sufficient for ESC derivation. The PICMI is the result of progressive and defined ICM organization in vitro and has a distinct state of cell signaling. The PICMI can be cryopreserved without compromising ESC derivation capacity. As a closer progenitor of ESCs than the ICM, the PICMI provides insight into the pluripotent state of human stem cells.


Stem Cells | 2015

Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells

Galbha Duggal; Sharat Warrier; Sabitri Ghimire; Dorien Broekaert; Margot Van der Jeught; Sylvie Lierman; Tom Deroo; Luc Peelman; Ann Van Soom; Ria Cornelissen; Björn Menten; Pieter Mestdagh; Jo Vandesompele; Matthias S Roost; Roderick C. Slieker; Bastiaan T. Heijmans; Dieter Deforce; Petra De Sutter; Susana Lopes; Björn Heindryckx

Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a naïve pluripotent state. Efforts have been made to trigger naïve pluripotency in hESCs for subsequent unbiased lineage‐specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of naïve genes such as NANOG and KLF2 or inclusion of multiple pluripotency‐associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor + Ascorbic Acid + Forskolin) facilitating rapid induction of transgene‐free naïve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted naïve hESCs survived long‐term single‐cell passaging, maintained a normal karyotype, upregulated naïve pluripotency genes, and exhibited dependence on signaling pathways similar to naïve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward naïve pluripotency. Collectively, we demonstrate an alternate route to capture naïve pluripotency in hESCs that is fast, reproducible, supports naïve mESC derivation, and allows efficient differentiation. Stem Cells 2015;33:2686–2698


Human Reproduction | 2014

Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death

Fang Li; Volkan Turan; Sylvie Lierman; Claude Cuvelier; Petra De Sutter; Kutluk Oktay

STUDY QUESTION Can Sphingosine-1-phosphate (S1P), a ceramide-induced death pathway inhibitor, prevent cyclophosphamide (Cy) or doxorubicin (Doxo) induced apoptotic follicle death in human ovarian xenografts? SUMMARY ANSWER S1P can block human apoptotic follicle death induced by both drugs, which have differing mechanisms of cytotoxicity. WHAT IS KNOWN ALREADY S1P has been shown to decrease the impact of chemotherapy and radiation on germinal vesicle oocytes in animal studies but no human translational data exist. STUDY DESIGN, SIZE, DURATION Experimental human ovarian xenografting to test the in vivo protective effect of S1P on primordial follicle survival in the chemotherapy setting. The data were validated by assessing the same protective effect in the ovaries of xenografted mice in parallel. PARTICIPANTS/MATERIALS, SETTING, METHODS Xenografted mice were treated with Cy (75 mg/kg), Cy+S1P (200 μM), Doxo (10 mg/kg), Doxo+S1P or vehicle only (Control). S1P was administered via continuous infusion using a mini-osmotic pump beginning 24 h prior to and ending 72 h post-chemotherapy. Grafts were then recovered and stained with anti-caspase 3 antibody for the detection of apoptosis in primordial follicles. The percentage of apoptotic to total primordial follicles was calculated in each group. MAIN RESULTS AND THE ROLE OF CHANCE Both Cy and Doxo resulted in a significant increase in apoptotic follicle death in human ovarian xenografts compared with controls (62.0 ± 3.9% versus 25.7 ± 7.4%, P < 0.01 and 76.7 ± 7.4% versus 25.7 ± 7.4%, P < 0.01, respectively). This chemotherapy-induced apoptotic death was reduced both in the Cy+S1P (32.7 ± 4.4%, P < 0.01) and the Doxo+S1P group (27.1 ± 7.6%, P < 0.01) compared with Cy and Doxo groups, respectively. In the Doxo+S1P and Cy+S1P groups, the percentages of apoptotic follicles were similar to those of vehicle-treated controls (P > 0.05). The findings from the ovaries of the severe combined immunodeficient mice mirrored the findings with human tissue. LIMITATIONS, REASONS FOR CAUTION The functionality of the rescued human ovarian follicles needs to be evaluated in future studies though the studies in rodents showed that rescued oocytes can result in healthy offspring. In addition, the impact of S1P on cancer cells should be further studied. WIDER IMPLICATIONS OF THE FINDINGS S1P and its future analogs hold promise for preserving fertility by pharmacological means for patients undergoing chemotherapy. STUDY FUNDING/COMPETING INTEREST(S) This research is supported by NIHs NICHD and NCI (5R01HD053112-06 and 5R21HD061259-02) and the Flemish Foundation for Scientific Research (FWO-Vlaanderen, grant number FWO G0.065.11N10). The authors have no conflicts of interest to disclose.


Stem Cells and Development | 2011

The influence of early embryo traits on human embryonic stem cell derivation efficiency.

Thomas O'Leary; Björn Heindryckx; Sylvie Lierman; Margot Van der Jeught; Björn Menten; Dieter Deforce; Ria Cornelissen; Susana Lopes; Petra De Sutter

Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.


Reproductive Biomedicine Online | 2010

Developmental competence of parthenogenetic mouse and human embryos after chemical or electrical activation

Karen Versieren; Björn Heindryckx; Sylvie Lierman; Jan Gerris; Petra De Sutter

Parthenogenetic reconstruction is one major strategy to create patient-specific stem cells. The aim of this study was to find the best artificial activation protocol for parthenogenetic activation of mouse and human oocytes comparing different methods. In a first set of experiments, in-vivo matured mouse oocytes and human failed-fertilized, in-vitro and in-vivo matured oocytes were artificially activated by a chemical (ionomycin) or electrical stimulus. In a second set of experiments, a combination of activating agents (electrical pulses followed by ionomycin or SrCl(2)) was applied in an aim to improve developmental competence. All embryos were evaluated daily until day 6 after activation. Mouse blastocysts were differentially stained to evaluate blastocyst quality. For mouse oocytes and human failed-fertilized oocytes, blastocyst development was significantly higher after electrical activation (P<0.05). For human in-vitro and in-vivo matured oocytes, blastocyst formation was only obtained after electrical activation of in-vitro matured oocytes. After combining activating agents, no differences in development could be observed. In conclusion, this study revealed that for both mouse and human oocytes development to the blastocyst stage was significantly better after electrical activation compared with chemical activation. Combining activating agents had no further positive effect on developmental potential.


Reproductive Biomedicine Online | 2008

Effect of ionomycin on oocyte activation and embryo development in mouse

Elke Heytens; R. Soleimani; Sylvie Lierman; Simon De Meester; Jan Gerris; Marc Dhont; Josiane Van der Elst; Petra De Sutter

Artificial oocyte activation using the calcium ionophore ionomycin is applied successfully in assisted reproduction but some concern exists on the clinical use. The aims of the present study were to optimize the oocyte activation scheme and to address embryo toxicity in a mouse model. Efficiency of oocyte activation and subsequent development was evaluated and ionomycin was found to be an efficient activator at 10 micromol/l. An improved effect of a second exposure to 5 micromol/l ionomycin on blastocyst development was observed. Toxicity of ionomycin on embryos was then investigated by evaluating pre- and post-implantation development of in-vivo fertilized oocytes following exposure to ionomycin. Blastocyst development, blastocyst cell numbers in trophectoderm and inner cell mass were not different between treated and non-treated zygotes. Also implantation rates and fetal parameters such as length, weight and morphological parameters were similar between the fetuses originating from zygotes treated with ionomycin and non-treated zygotes. Furthermore, healthy offspring originating from ionomycin-treated zygotes was born. In conclusion, no adverse effects of ionomycin on in-vitro or in-vivo mouse embryo development were noticed, giving arguments in favour of the use of ionomycin, although negative long-term effects of this compound cannot be excluded at present.


Stem Cells and Development | 2013

The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation.

Margot Van der Jeught; Thomas O'Leary; Sabitri Ghimire; Sylvie Lierman; Galbha Duggal; Karen Versieren; Dieter Deforce; Susana Lopes; Björn Heindryckx; Petra De Sutter

In embryonic stem cell culture, small molecules can be used to alter key signaling pathways to promote self-renewal and inhibit differentiation. In mice, small-molecule inhibition of both the FGF/MEK/Erk and the GSK3β pathways during preimplantation development suppresses hypoblast formation, and this results in more pluripotent cells of the inner cell mass (ICM). In this study, we evaluated the effects of different small-molecule inhibitors of the FGF/MEK/Erk and GSK3β pathway on embryo preimplantation development, early lineage segregation, and subsequent embryonic stem cell derivation in the humans. We did not observe any effect on blastocyst formation, but small-molecule inhibition did affect the number of OCT3/4- and NANOG-positive cells in the human ICM. We found that combined inhibition of the FGF/MEK/Erk and GSK3β pathways by PD0325901 and CHIR99021, respectively, resulted in ICMs containing significantly more OCT3/4-positive cells. Inhibition of FGF/MEK/Erk alone as well as in combination with inhibition of GSK3β significantly increased the number of NANOG-positive cells in blastocysts possessing good-quality ICMs. Secondly, we verified the influence of this increased pluripotency after 2i culture on the efficiency of stem cell derivation. Similar human embryonic stem cell (hESC) derivation rates were observed after 2i compared to control conditions, resulting in 2 control hESC lines and 1 hESC line from an embryo cultured in 2i conditions. In conclusion, we demonstrated that FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human ICM, but does not improve stem cell derivation.


Human Reproduction | 2011

Aberrant spindle structures responsible for recurrent human metaphase I oocyte arrest with attempts to induce meiosis artificially

Björn Heindryckx; Sylvie Lierman; Catherine M.H. Combelles; Claude Cuvelier; Jan Gerris; P. De Sutter

BACKGROUND In some couples, not all retrieved oocytes mature, even after prolonged in vitro culture. The underlying mechanisms are not known, although ionophore treatment may alleviate metaphase I (MI) arrest in some mouse strains. We attempted to induce first polar body (PB) extrusion and fertilization using assisted oocyte activation (AOA) after ICSI in maturation-resistant human MI oocytes. METHODS Four ICSI patients are described in this retrospective study. A pilot study tested the calcium ionophore ionomycin (10 µM) on donated MI oocytes from patients with a normal number of metaphase II (MII) oocytes. Subsequently, ionomycin was used to induce first PB extrusion in two patients showing maturation-resistant MI oocytes. AOA, by calcium injection and ionomycin exposure, was applied when mature oocytes were available. Oocytes were analysed by polarized microscopy and immunostaining. RESULTS Ionomycin induced the first PB extrusion in MI oocytes from patients with a normal number of retrieved MII oocytes, while extended in vitro culture failed to achieve the MII stage. Similarly, ionomycin induced first PB extrusion in one of two patients with recurrent maturation-resistant MI oocytes. Use of ICSI combined with AOA on MII oocytes matured in vitro or in vivo resulted in failed or abnormal fertilization with no further embryo cleavage potential. Highly abnormal spindle and chromosome configurations were observed in MI maturation-resistant oocytes, in contrast to control MI oocytes. CONCLUSIONS Ionophore induced first PB extrusion in MI oocytes from patients without maturation arrest but to a lower extent in maturation-resistant MI oocytes. Immunofluorescence staining and confocal analysis revealed, for the first time, highly abnormal spindle/chromosomal structures that may be responsible for this maturation arrest.


Human Reproduction | 2014

Treatment of human embryos with the TGFβ inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation

Margot Van der Jeught; Björn Heindryckx; Thomas O'Leary; Galbha Duggal; Sabitri Ghimire; Sylvie Lierman; Nadine Van Roy; Susana Lopes; Tom Deroo; Dieter Deforce; Petra De Sutter

STUDY QUESTION Is there an effect of the TGFβ inhibitor SB431542 (SB) on the epiblast compartment of human blastocysts, and does it affect subsequent human embryonic stem cell (hESC) derivation? SUMMARY ANSWER SB increases the mean number of NANOG-positive cells in the inner cell mass (ICM), and allows for subsequent hESC derivation. WHAT IS KNOWN ALREADY It is known that inhibition of TGFβ by SB has a positive effect on mouse ESC self-renewal, while active TGFβ signalling is needed for self-renewal of primed ESC. STUDY DESIGN, SIZE, DURATION From December 2011 until March 2012, 263 donated spare embryos were used from patients who had undergone IVF/ICSI in our centre. PARTICIPANTS/MATERIALS, SETTING, METHODS Donated human embryos were cultured in the presence of SB or Activin A, and immunocytochemistry was performed on Day 6 blastocysts for NANOG and GATA6. Moreover, blastocysts were used for the derivation of hESC, with or without exposure to SB. MAIN RESULTS AND THE ROLE OF CHANCE Immunocytochemistry revealed a significantly higher number of NANOG-positive ICM cells in the SB group compared with the control (12.0 ± 5.9 versus 6.1 ± 4.7), while no difference was observed in the Activin A group compared with other groups (6.7 ± 3.7). The number of GATA6-positive ICM cells did not differ between the SB, Activin A and control group (8.8 ± 4.3, 8.0 ± 4.6 and 7.2 ± 4.0, respectively). Blocking TGFβ signalling did not prevent subsequent hESC line derivation. LIMITATIONS, REASONS FOR CAUTION The number of human blastocysts available for this study was too low to reveal if the observed increase in NANOG-positive epiblast cells after exposure to SB affected the efficiency of hESC derivation (12.5% compared with 16.7%). WIDER IMPLICATIONS OF THE FINDINGS This work can contribute to the derivation of naive hESC lines in the future. STUDY FUNDING/COMPETING INTEREST(S) M.V.d.J. is holder of a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT, grant number SB093128), Belgium. G.D. and this research are supported by the Research Foundation Flanders (FWO), grant number FWO-3G062910) and a Concerted Research Actions funding from BOF (Bijzonder Onderzoeksfonds University Ghent, grant number BOF GOA 01G01112). S.M.C.d. S.L. is supported by the Netherlands Organization of Scientific Research (NWO) (ASPASIA 015.007.037) and the Interuniversity Attraction Poles (PAI) (no. P7/07). P.D.S. is holder of a fundamental clinical research mandate by the FWO. We would like to thank Ferring Company (Aalst, Belgium) for financial support of this study. The authors do not have any competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.


Human Reproduction | 2014

A systematic analysis of the suitability of preimplantation genetic diagnosis for mitochondrial diseases in a heteroplasmic mitochondrial mouse model

Jitesh Neupane; Mado Vandewoestyne; Björn Heindryckx; Sabitri Ghimire; Yuechao Lu; Chen Qian; Sylvie Lierman; Rudy Van Coster; Jan Gerris; Tom Deroo; Dieter Deforce; Petra De Sutter

STUDY QUESTION What is the reliability of preimplantation genetic diagnosis (PGD) based on polar body (PB), blastomere or trophectoderm (TE) analysis in a heteroplasmic mitochondrial mouse model? SUMMARY ANSWER The reliability of PGD to determine the level of mitochondrial DNA (mtDNA) heteroplasmy is questionable based on either the first or second PB analysis; however, PGD based on blastomere or TE analysis seems more reliable. WHAT IS KNOWN ALREADY PGD has been suggested as a technique to determine the level of mtDNA heteroplasmy in oocytes and embryos to avoid the transmission of heritable mtDNA disorders. A strong correlation between first PBs and oocytes and between second PBs and zygotes was reported in mice but is controversial in humans. So far, the levels of mtDNA heteroplasmy in first PBs, second PBs and their corresponding oocytes, zygotes and blastomeres, TE and blastocysts have not been analysed within the same embryo. STUDY DESIGN, SIZE AND DURATION We explored the suitability of PGD by comparing the level of mtDNA heteroplasmy between first PBs and metaphase II (MII) oocytes (n = 33), between first PBs, second PBs and zygotes (n = 30), and between first PBs, second PBs and their corresponding blastomeres of 2- (n = 10), 4- (n = 10) and 8-cell embryos (n = 11). Levels of mtDNA heteroplasmy in second PBs (n = 20), single blastomeres from 8-cell embryos (n = 20), TE (n = 20) and blastocysts (n = 20) were also compared. PARTICIPANTS/MATERIALS, SETTING, METHODS Heteroplasmic mice (BALB/cOlaHsd), containing mtDNA mixtures of BALB/cByJ and NZB/OlaHsd, were used in this study. The first PBs were biopsied from in vivo matured MII oocytes. The ooplasm was then subjected to ICSI. After fertilization, second PBs were biopsied and zygotes were cultured to recover individual blastomeres from 2-, 4- and 8-cell embryos. Similarly, second PBs were biopsied from in vivo fertilized zygotes and single blastomeres were biopsied from 8-cell stage embryos. The remaining embryo was cultured until the blastocyst stage to isolate TE cells. Polymerase chain reaction followed by restriction fragment length polymorphism was performed to measure the level of mtDNA heteroplasmy in individual samples. MAIN RESULTS AND THE ROLE OF CHANCE Modest correlations and wide prediction interval [PI at 95% confidence interval (CI)] were observed in the level of mtDNA heteroplasmy between first PBs and their corresponding MII oocytes (r(2) = 0.56; PI = 45.96%) and zygotes (r(2) = 0.69; PI = 37.07%). The modest correlations and wide PI were observed between second PBs and their corresponding zygotes (r(2) = 0.65; PI = 39.69%), single blastomeres (r(2) = 0.42; PI = 48.04%), TE (r(2) = 0.26; PI = 54.79%) and whole blastocysts (r(2) = 0.40; PI = 57.48%). A strong correlation with a narrow PI was observed among individual blastomeres of 2-, 4- and 8-cell stage embryos (r(2) = 0.92; PI = 11.73%, r(2) = 0.86; PI = 18.85% and r(2) = 0.85; PI = 21.42%, respectively), and also between TE and whole blastocysts (r(2) = 0.90; PI = 23.58%). Moreover, single blastomeres from 8-cell stage embryos showed a close correlation and an intermediate PI with corresponding TE cells (r(2) = 0.81; PI = 28.15%) and blastocysts (r(2) = 0.76; PI = 36.43%). LIMITATIONS, REASONS FOR CAUTION These results in a heteroplasmic mitochondrial mouse model should be further verified in patients with mtDNA disorders to explore the reliability of PGD. WIDER IMPLICATIONS OF THE FINDINGS To avoid the transmission of heritable mtDNA disorders, PGD techniques should accurately determine the level of heteroplasmy in biopsied cells faithfully representing the heteroplasmic load in oocytes and preimplantation embryos. Unlike previous PGD studies in mice, our results accord with PGD results for mitochondrial disorders in humans, and question the reliability of PGD using different stages of embryonic development. TRIAL REGISTRATION NUMBER Not applicable.

Collaboration


Dive into the Sylvie Lierman's collaboration.

Top Co-Authors

Avatar

Petra De Sutter

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. De Sutter

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Galbha Duggal

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas O'Leary

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Susana Lopes

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tom Deroo

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sabitri Ghimire

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge