Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tom Deroo is active.

Publication


Featured researches published by Tom Deroo.


Nature Medicine | 1999

A UNIVERSAL INFLUENZA A VACCINE BASED ON THE EXTRACELLULAR DOMAIN OF THE M2 PROTEIN

Sabine Neirynck; Tom Deroo; Xavier Saelens; Peter Vanlandschoot; Willy Min Jou; Walter Fiers

The antigenic variation of influenza virus represents a major health problem. However, the extracellular domain of the minor, virus-coded M2 protein is nearly invariant in all influenza A strains. We genetically fused this M2 domain to the hepatitis B virus core (HBc) protein to create fusion gene coding for M2HBc; this gene was efficiently expressed in Escherichia coli. Intraperitoneal or intranasal administration of purified M2HBc particles to mice provided 90–100% protection against a lethal virus challenge. The protection was mediated by antibodies, as it was transferable by serum. The enhanced immunogenicity of the M2 extracellular domain exposed on HBc particles allows broad-spectrum, long-lasting protection against influenza A infections.


Journal of Biological Chemistry | 2008

An Influenza A Vaccine Based on Tetrameric Ectodomain of Matrix Protein 2

Marina De Filette; Wouter Martens; Kenny Roose; Tom Deroo; Frederik Vervalle; Mostafa Bentahir; Joël Vandekerckhove; Walter Fiers; Xavier Saelens

Matrix protein 2 (M2) of influenza A is a tetrameric type III membrane protein that functions as a proton-selective channel. The extracellular domain (M2e) has remained nearly invariable since the first human influenza strain was isolated in 1933. By linking a modified form of the leucine zipper of the yeast transcription factor GCN4 to M2e, we obtained a recombinant tetrameric protein, M2e-tGCN4. This protein mimics the quaternary structure of the ectodomain of the natural M2 protein. M2e-tGCN4 was purified, biochemically characterized, and used to immunize BALB/c mice. High M2e-specific serum IgG antibody titers were obtained following either intraperitoneal or intranasal administration. Immunized mice were protected fully against a potentially lethal influenza A virus challenge. Antibodies raised by M2e-tGCN4 immunization specifically bound to the surface of influenza-infected cells and to an M2-expressing cell line. Using a M2e peptide competition enzyme-linked immunosorbent assay with M2-expressing cells as target, we obtained evidence that M2e-tGCN4 induces antibodies that are specific for the native tetrameric M2 ectodomain. Therefore, fusion of an oligomerization domain to the extracellular part of a transmembrane protein allows it to mimic the natural quaternary structure and can promote the induction of oligomer-specific antibodies.


Stem Cells | 2015

Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells

Galbha Duggal; Sharat Warrier; Sabitri Ghimire; Dorien Broekaert; Margot Van der Jeught; Sylvie Lierman; Tom Deroo; Luc Peelman; Ann Van Soom; Ria Cornelissen; Björn Menten; Pieter Mestdagh; Jo Vandesompele; Matthias S Roost; Roderick C. Slieker; Bastiaan T. Heijmans; Dieter Deforce; Petra De Sutter; Susana Lopes; Björn Heindryckx

Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a naïve pluripotent state. Efforts have been made to trigger naïve pluripotency in hESCs for subsequent unbiased lineage‐specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of naïve genes such as NANOG and KLF2 or inclusion of multiple pluripotency‐associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor + Ascorbic Acid + Forskolin) facilitating rapid induction of transgene‐free naïve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted naïve hESCs survived long‐term single‐cell passaging, maintained a normal karyotype, upregulated naïve pluripotency genes, and exhibited dependence on signaling pathways similar to naïve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward naïve pluripotency. Collectively, we demonstrate an alternate route to capture naïve pluripotency in hESCs that is fast, reproducible, supports naïve mESC derivation, and allows efficient differentiation. Stem Cells 2015;33:2686–2698


Mechanisms of Development | 2009

Requirement of Wnt/β-catenin signaling in pronephric kidney development

Jon P. Lyons; Rachel K. Miller; Xiaolan Zhou; Gilbert Weidinger; Tom Deroo; Tinneke Denayer; Jae Il Park; Hong Ji; Ji Yeon Hong; Annette Li; Randall T. Moon; Elizabeth A. Jones; Kris Vleminckx; Peter D. Vize; Pierre D. McCrea

The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in kidney organogenesis, little is known of the definitive downstream signaling pathway(s) that mediate their effects. Here we report that inhibition of Wnt/beta-catenin signaling within the pronephric field of Xenopus results in significant losses to kidney epithelial tubulogenesis with little or no effect on adjoining axis or somite development. We find that the requirement for Wnt/beta-catenin signaling extends throughout the pronephric primordium and is essential for the development of proximal and distal tubules of the pronephros as well as for the development of the duct and glomus. Although less pronounced than effects upon later pronephric tubule differentiation, inhibition of the Wnt/beta-catenin pathway decreased expression of early pronephric mesenchymal markers indicating it is also needed in early pronephric patterning. We find that upstream inhibition of Wnt/beta-catenin signals in zebrafish likewise reduces pronephric epithelial tubulogenesis. We also find that exogenous activation of Wnt/beta-catenin signaling within the Xenopus pronephric field results in significant tubulogenic losses. Together, we propose Wnt/beta-catenin signaling is required for pronephric tubule, duct and glomus formation in Xenopus laevis, and this requirement is conserved in zebrafish pronephric tubule formation.


Stem Cells | 2008

Canonical Wnt Signaling Controls Proliferation of Retinal Stem/Progenitor Cells in Postembryonic Xenopus Eyes

Tinneke Denayer; Morgane Locker; Caroline Borday; Tom Deroo; Sylvie Janssens; Andreas Hecht; Frans van Roy; Muriel Perron; Kris Vleminckx

Vertebrate retinal stem cells, which reside quiescently within the ciliary margin, may offer a possibility for treatment of degenerative retinopathies. The highly proliferative retinal precursor cells in Xenopus eyes are confined to the most peripheral region, called the ciliary marginal zone (CMZ). Although the canonical Wnt pathway has been implicated in the developing retina of different species, little is known about its involvement in postembryonic retinas. Using a green fluorescent protein‐based Wnt‐responsive reporter, we show that in transgenic Xenopus tadpoles, the canonical Wnt signaling is activated in the postembryonic CMZ. To further investigate the functional implications of this, we generated transgenic, hormone‐inducible canonical Wnt pathway activating and repressing systems, which are directed to specifically intersect at the nuclear endpoint of transcriptional Wnt target gene activation. We found that postembryonic induction of the canonical Wnt pathway in transgenic retinas resulted in increased proliferation in the CMZ compartment. This is most likely due to delayed cell cycle exit, as inferred from a pulse‐chase experiment on 5‐bromo‐2′‐deoxyuridine‐labeled retinal precursors. Conversely, repression of the canonical Wnt pathway inhibited proliferation of CMZ cells. Neither activation nor repression of the Wnt pathway affected the differentiated cells in the central retina. We conclude that even at postembryonic stages, the canonical Wnt signaling pathway continues to have a major function in promoting proliferation and maintaining retinal stem cells. These findings may contribute to the eventual design of vertebrate, stem cell‐based retinal therapies.


Human Reproduction | 2014

Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization

Dimitra Nikiforaki; F. Vanden Meerschaut; Chen Qian; I. De Croo; Yuechao Lu; Tom Deroo; E. Van den Abbeel; Björn Heindryckx; P. De Sutter

STUDY QUESTION What are the precise patterns of calcium oscillations during the fertilization of human oocytes matured either in vivo or in vitro or aged in vitro and what is the effect of cryopreservation? SUMMARY ANSWER Human oocytes matured in vivo exhibit a specific pattern of calcium oscillations, which is affected by in vitro maturation, in vitro ageing and cryopreservation. WHAT IS KNOWN ALREADY Oscillations in cytoplasmic calcium concentration are crucial for oocyte activation and further embryonic development. While several studies have described in detail the calcium oscillation pattern during fertilization in animal models, studies with human oocytes are scarce. STUDY DESIGN, SIZE, DURATION This was a laboratory-based study using human MII oocytes matured in vivo or in vitro either fresh or after cryopreservation with slow freezing or vitrification. Altogether, 205 human oocytes were included in the analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS In vivo and in vitro matured human oocytes were used for this research either fresh or following vitrification/warming (V/W) and slow freezing/thawing (F/T). Human oocytes were obtained following written informed consent from patients undergoing ovarian hyperstimulation. For the calcium pattern analysis, oocytes were loaded with the ratiometric calcium indicator fluorescent dye Fura-2. Following ICSI using sperm from a single donor, intracellular calcium was measured for 16 h at 37°C under 6% CO(2). The calcium oscillation parameters were calculated for all intact oocytes that showed calcium oscillations and were analyzed using the Mann-Whitney U-test. MAIN RESULTS AND THE ROLE OF CHANCE Human in vivo MII oocytes display a specific pattern of calcium oscillations following ICSI. This pattern is significantly affected by in vitro ageing, with the calcium oscillations occurring over a longer period of time and with a lower frequency, shorter duration and higher amplitude (P < 0.05). In vitro matured oocytes from the GV and MI stage exhibit a different pattern of calcium oscillations with calcium transients being of lower frequency and shorter duration compared with in vivo matured MII. In MI oocytes that reached the MII stage within 3 h the calcium oscillations additionally appear over a longer period of time (P < 0.05). In vivo MII oocytes show a different calcium oscillation pattern following V/W with calcium oscillations occurring over a longer period of time, with a higher amplitude and a lower frequency (P < 0.05). In vitro matured oocytes, either from the GV or the MI stage, also display an altered pattern of calcium oscillations after V/W and the parameters that were similarly affected in all these oocyte groups are the frequency and the amplitude of the calcium transients. Slow freezing/thawing differentially affects the calcium oscillation pattern of in vitro matured and in vitro aged oocytes. LIMITATIONS, REASONS FOR CAUTION The relationship between a specific pattern of calcium oscillations and subsequent human embryonic development could not be evaluated since the calcium indicator used and the high-intensity excitation light impair development. Furthermore, all oocytes were derived from stimulated cycles and immature oocytes were denuded prior to in vitro maturation. WIDER IMPLICATIONS OF THE FINDINGS Our data show for the first time how calcium signalling during human fertilization is affected by oocyte in vitro maturation, in vitro ageing as well as V/W and slow freezing/thawing. The analysis of calcium oscillations could be used as an oocyte quality indicator to evaluate in vitro culture and cryopreservation techniques of human oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a clinical research mandate from the Flemish Foundation of Scientific Research (FWO-Vlaanderen, FWO09/ASP/063) to F.V.M, a fundamental clinical research mandate from the FWO-Vlaanderen (FWO05/FKM/001) to P.D.S and a Ghent University grant (KAN-BOF E/01321/01) to B.H. The authors have no conflict of interest to declare.


Journal of Biological Chemistry | 2004

Global Inhibition of Lef1/Tcf-dependent Wnt Signaling at Its Nuclear End Point Abrogates Development in Transgenic Xenopus Embryos

Tom Deroo; Tinneke Denayer; Frans van Roy; Kris Vleminckx

Analysis of canonical Wnt signaling during vertebrate development by means of knock-out or transgenic approaches is often hampered by functional redundancy as well as pathway bifurcations downstream of the manipulated components. We report the design of an optimized chimera capable of blocking transcriptional activation of Lef1/Tcf-β-catenin target genes, thus enabling intervention with the canonical Wnt pathway at its nuclear end point. This construct was made hormone-inducible, both functionally and transcriptionally, and was transgenically integrated in Xenopus embryos. Down-regulation of target genes was clearly observed upon treatment of these embryos with dexamethasone. In addition, exposure of variously aged transgenic embryos to dexamethasone caused complex phenotypes with many new but also several recognizable features stemming from inhibition of canonical Wnt signaling. At least in some tissues, a significant reduction in cell proliferation and an increase in programmed cell death appeared to underlie these phenotypes. Our inducible transgenic system can serve a broad range of experimental settings designed to unveil new functional aspects of Lef1/Tcf-β-catenin signaling during vertebrate embryogenesis.


Human Reproduction | 2014

Treatment of human embryos with the TGFβ inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation

Margot Van der Jeught; Björn Heindryckx; Thomas O'Leary; Galbha Duggal; Sabitri Ghimire; Sylvie Lierman; Nadine Van Roy; Susana Lopes; Tom Deroo; Dieter Deforce; Petra De Sutter

STUDY QUESTION Is there an effect of the TGFβ inhibitor SB431542 (SB) on the epiblast compartment of human blastocysts, and does it affect subsequent human embryonic stem cell (hESC) derivation? SUMMARY ANSWER SB increases the mean number of NANOG-positive cells in the inner cell mass (ICM), and allows for subsequent hESC derivation. WHAT IS KNOWN ALREADY It is known that inhibition of TGFβ by SB has a positive effect on mouse ESC self-renewal, while active TGFβ signalling is needed for self-renewal of primed ESC. STUDY DESIGN, SIZE, DURATION From December 2011 until March 2012, 263 donated spare embryos were used from patients who had undergone IVF/ICSI in our centre. PARTICIPANTS/MATERIALS, SETTING, METHODS Donated human embryos were cultured in the presence of SB or Activin A, and immunocytochemistry was performed on Day 6 blastocysts for NANOG and GATA6. Moreover, blastocysts were used for the derivation of hESC, with or without exposure to SB. MAIN RESULTS AND THE ROLE OF CHANCE Immunocytochemistry revealed a significantly higher number of NANOG-positive ICM cells in the SB group compared with the control (12.0 ± 5.9 versus 6.1 ± 4.7), while no difference was observed in the Activin A group compared with other groups (6.7 ± 3.7). The number of GATA6-positive ICM cells did not differ between the SB, Activin A and control group (8.8 ± 4.3, 8.0 ± 4.6 and 7.2 ± 4.0, respectively). Blocking TGFβ signalling did not prevent subsequent hESC line derivation. LIMITATIONS, REASONS FOR CAUTION The number of human blastocysts available for this study was too low to reveal if the observed increase in NANOG-positive epiblast cells after exposure to SB affected the efficiency of hESC derivation (12.5% compared with 16.7%). WIDER IMPLICATIONS OF THE FINDINGS This work can contribute to the derivation of naive hESC lines in the future. STUDY FUNDING/COMPETING INTEREST(S) M.V.d.J. is holder of a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT, grant number SB093128), Belgium. G.D. and this research are supported by the Research Foundation Flanders (FWO), grant number FWO-3G062910) and a Concerted Research Actions funding from BOF (Bijzonder Onderzoeksfonds University Ghent, grant number BOF GOA 01G01112). S.M.C.d. S.L. is supported by the Netherlands Organization of Scientific Research (NWO) (ASPASIA 015.007.037) and the Interuniversity Attraction Poles (PAI) (no. P7/07). P.D.S. is holder of a fundamental clinical research mandate by the FWO. We would like to thank Ferring Company (Aalst, Belgium) for financial support of this study. The authors do not have any competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.


Human Reproduction | 2014

A systematic analysis of the suitability of preimplantation genetic diagnosis for mitochondrial diseases in a heteroplasmic mitochondrial mouse model

Jitesh Neupane; Mado Vandewoestyne; Björn Heindryckx; Sabitri Ghimire; Yuechao Lu; Chen Qian; Sylvie Lierman; Rudy Van Coster; Jan Gerris; Tom Deroo; Dieter Deforce; Petra De Sutter

STUDY QUESTION What is the reliability of preimplantation genetic diagnosis (PGD) based on polar body (PB), blastomere or trophectoderm (TE) analysis in a heteroplasmic mitochondrial mouse model? SUMMARY ANSWER The reliability of PGD to determine the level of mitochondrial DNA (mtDNA) heteroplasmy is questionable based on either the first or second PB analysis; however, PGD based on blastomere or TE analysis seems more reliable. WHAT IS KNOWN ALREADY PGD has been suggested as a technique to determine the level of mtDNA heteroplasmy in oocytes and embryos to avoid the transmission of heritable mtDNA disorders. A strong correlation between first PBs and oocytes and between second PBs and zygotes was reported in mice but is controversial in humans. So far, the levels of mtDNA heteroplasmy in first PBs, second PBs and their corresponding oocytes, zygotes and blastomeres, TE and blastocysts have not been analysed within the same embryo. STUDY DESIGN, SIZE AND DURATION We explored the suitability of PGD by comparing the level of mtDNA heteroplasmy between first PBs and metaphase II (MII) oocytes (n = 33), between first PBs, second PBs and zygotes (n = 30), and between first PBs, second PBs and their corresponding blastomeres of 2- (n = 10), 4- (n = 10) and 8-cell embryos (n = 11). Levels of mtDNA heteroplasmy in second PBs (n = 20), single blastomeres from 8-cell embryos (n = 20), TE (n = 20) and blastocysts (n = 20) were also compared. PARTICIPANTS/MATERIALS, SETTING, METHODS Heteroplasmic mice (BALB/cOlaHsd), containing mtDNA mixtures of BALB/cByJ and NZB/OlaHsd, were used in this study. The first PBs were biopsied from in vivo matured MII oocytes. The ooplasm was then subjected to ICSI. After fertilization, second PBs were biopsied and zygotes were cultured to recover individual blastomeres from 2-, 4- and 8-cell embryos. Similarly, second PBs were biopsied from in vivo fertilized zygotes and single blastomeres were biopsied from 8-cell stage embryos. The remaining embryo was cultured until the blastocyst stage to isolate TE cells. Polymerase chain reaction followed by restriction fragment length polymorphism was performed to measure the level of mtDNA heteroplasmy in individual samples. MAIN RESULTS AND THE ROLE OF CHANCE Modest correlations and wide prediction interval [PI at 95% confidence interval (CI)] were observed in the level of mtDNA heteroplasmy between first PBs and their corresponding MII oocytes (r(2) = 0.56; PI = 45.96%) and zygotes (r(2) = 0.69; PI = 37.07%). The modest correlations and wide PI were observed between second PBs and their corresponding zygotes (r(2) = 0.65; PI = 39.69%), single blastomeres (r(2) = 0.42; PI = 48.04%), TE (r(2) = 0.26; PI = 54.79%) and whole blastocysts (r(2) = 0.40; PI = 57.48%). A strong correlation with a narrow PI was observed among individual blastomeres of 2-, 4- and 8-cell stage embryos (r(2) = 0.92; PI = 11.73%, r(2) = 0.86; PI = 18.85% and r(2) = 0.85; PI = 21.42%, respectively), and also between TE and whole blastocysts (r(2) = 0.90; PI = 23.58%). Moreover, single blastomeres from 8-cell stage embryos showed a close correlation and an intermediate PI with corresponding TE cells (r(2) = 0.81; PI = 28.15%) and blastocysts (r(2) = 0.76; PI = 36.43%). LIMITATIONS, REASONS FOR CAUTION These results in a heteroplasmic mitochondrial mouse model should be further verified in patients with mtDNA disorders to explore the reliability of PGD. WIDER IMPLICATIONS OF THE FINDINGS To avoid the transmission of heritable mtDNA disorders, PGD techniques should accurately determine the level of heteroplasmy in biopsied cells faithfully representing the heteroplasmic load in oocytes and preimplantation embryos. Unlike previous PGD studies in mice, our results accord with PGD results for mitochondrial disorders in humans, and question the reliability of PGD using different stages of embryonic development. TRIAL REGISTRATION NUMBER Not applicable.


The International Journal of Developmental Biology | 2010

Direct control of Hoxd1 and Irx3 expression by Wnt/beta-catenin signaling during anteroposterior patterning of the neural axis in Xenopus.

Sylvie Janssens; Tinneke Denayer; Tom Deroo; Frans van Roy; Kris Vleminckx

During and after gastrulation, the neural axis in vertebrates is patterned along the antero-posterior axis by the combined activity of signaling factors secreted in the neural ectoderm and the underlying mesoderm. These signals divide the neural axis into four major divisions: the forebrain, midbrain, hindbrain and spinal chord. Among the signals that pattern the neural axis, Wnts play a prominent role and many patterning genes have been found to be direct Wnt/beta-catenin target genes, including several homeobox domain-containing transcription factors. Here we show that HoxD1 and Irx3 are transcriptionally induced by the Wnt pathway during neurulation. Using induction in the presence of the translation blocking drug cycloheximide and chromatin immunoprecipitation assays, we confirm that HoxD1 and Irx3 are both direct Wnt target genes. In addition, we identified Crabp2 (cellular retinoic acid binding protein 2) as an indirect target that potentially links the activities of Wnt and retinoic acid during antero-posterior patterning.

Collaboration


Dive into the Tom Deroo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra De Sutter

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabitri Ghimire

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jitesh Neupane

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sylvie Lierman

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuechao Lu

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Chen Qian

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Galbha Duggal

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge