Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philippe Loget is active.

Publication


Featured researches published by Philippe Loget.


Nature Genetics | 2009

Mutations in the [beta]-tubulin gene TUBB2B result in asymmetrical polymicrogyria

Xavier H. Jaglin; Karine Poirier; Yoann Saillour; Emmanuelle Buhler; Guoling Tian; Nadia Bahi-Buisson; Catherine Fallet-Bianco; Françoise Phan-Dinh-Tuy; Xiang-Peng Kong; Pascale Bomont; Laëtitia Castelnau-Ptakhine; Sylvie Odent; Philippe Loget; Manoelle Kossorotoff; Irina Snoeck; Ghislaine Plessis; Philippe Parent; Cherif Beldjord; Carlos Cardoso; Alfonso Represa; Jonathan Flint; David A. Keays; Nicholas J. Cowan; Jamel Chelly

Polymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri and a thick disorganized cortical plate lacking normal lamination. Here we report de novo mutations in a β-tubulin gene, TUBB2B, in four individuals and a 27-gestational-week fetus with bilateral asymmetrical polymicrogyria. Neuropathological examination of the fetus revealed an absence of cortical lamination associated with the presence of ectopic neuronal cells in the white matter and in the leptomeningeal spaces due to breaches in the pial basement membrane. In utero RNAi-based inactivation demonstrates that TUBB2B is required for neuronal migration. We also show that two disease-associated mutations lead to impaired formation of tubulin heterodimers. These observations, together with previous data, show that disruption of microtubule-based processes underlies a large spectrum of neuronal migration disorders that includes not only lissencephaly and pachygyria, but also polymicrogyria malformations.


Brain | 2008

Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A

Catherine Fallet-Bianco; Laurence Loeuillet; Karine Poirier; Philippe Loget; Franc oise Chapon; Laurent Pasquier; Yoann Saillour; Cherif Beldjord; Jamel Chelly; Fiona Francis

Lissencephalies are congenital malformations responsible for epilepsy and mental retardation in children. A number of distinct lissencephaly syndromes have been characterized, according to the aspect and the topography of the cortical malformation, the involvement of other cerebral structures and the identified genetic defect. A mutation in TUBA1A, coding for alpha 1 tubulin, was recently identified in a mutant mouse associated with a behavioural disorder and a disturbance of the laminar cytoarchitectony of the isocortex and the hippocampus. Mutations of TUBA1A were subsequently found in children with mental retardation and brain malformations showing a wide spectrum of severities. Here we describe four fetuses with TUBA1A mutations and a prenatal diagnosis of major cerebral dysgeneses leading to a termination of pregnancy due to the severity of the prognosis. The study of these fetuses at 23, 25, 26 and 35 gestational weeks shows that mutations of TUBA1A are associated with a neuropathological phenotypic spectrum which consistently encompasses five brain structures, including the neocortex, hippocampus, corpus callosum, cerebellum and brainstem. Less constantly, abnormalities were also identified in basal ganglia, olfactory bulbs and germinal zones. At the microscopical level, migration abnormalities are suggested by abnormal cortical and hippocampal lamination, and heterotopic neurons in the cortex, cerebellum and brainstem. There are also numerous neuronal differentiation defects, such as the presence of immature, randomly oriented neurons and abnormal axon tracts and fascicles. Thus, the TUBA1A phenotype is distinct from LIS1, DCX, RELN and ARX lissencephalies. Compared with the phenotypes of children mutated for TUBA1A, these prenatally diagnosed fetal cases occur at the severe end of the TUBA1A lissencephaly spectrum. This study emphasizes the importance of neuropathological examinations in cases of lissencephaly for improving our knowledge of the distinct pathogenetic and pathophysiological mechanisms.


European Journal of Medical Genetics | 2009

Twelve new patients with 13q deletion syndrome: genotype-phenotype analyses in progress.

Chloé Quélin; Claude Bendavid; Christèle Dubourg; Céline de La Rochebrochard; Josette Lucas; Catherine Henry; Sylvie Jaillard; Philippe Loget; Laurence Loeuillet; Didier Lacombe; Jean-Marie Rival; Véronique David; Sylvie Odent; Laurent Pasquier

13q deletion is characterized by a wide phenotypic spectrum resulting from a partial deletion of the long arm of chromosome 13. The main clinical features are mental retardation, growth retardation, craniofacial dysmorphy and various congenital defects. Only one recent Italian study was aimed at determining genotype-phenotype correlations among 13q deletions from a group of mainly live born children, using array-CGH and FISH. In order to improve the molecular characterization of 13q monosomy, 12 new patients (9 foetuses and 3 children) were collected based on a cohort of holoprosencephaly (HPE) linked to ZIC2 gene deletion and/or patients with 13q deletion diagnosed by standard karyotype. First, quantitative gene screening using MLPA (Multiplex Ligation dependent Probe Amplification) was performed to look for ZIC2 gene deletion and then, CGH array analysis was carried out using the Agilent Human Genome CGH microarray 4x44K (Agilent Technologies, Santa Clara, USA). All the foetuses had severe cerebral midline malformations associated with a deletion including the ZIC2 gene. We report one patient with Steinfeld phenotype linked to this chromosomal anomaly, and suggest that some of the associations between cerebral midline malformation and limb defects might be related to 13q deletion. Further candidate genes are suspected to explain the malformations associated with cerebral anomalies in the hypothesis of a contiguous gene syndrome: SPRY2 in 13q31.1 is implicated in lens cell proliferation and differentiation for congenital cataract; GPC5 in 13q32 is mainly expressed in the mesenchyme of the developing limb bud for upper limb anomalies.


Journal of Medical Genetics | 2011

New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases

Sandra Mercier; Christèle Dubourg; Nicolas Garcelon; Boris Campillo-Gimenez; Isabelle Gicquel; Marion Belleguic; Leslie Ratié; Laurent Pasquier; Philippe Loget; Claude Bendavid; Sylvie Jaillard; Lucie Rochard; Chloé Quélin; Valérie Dupé; Véronique David; Sylvie Odent

Background Holoprosencephaly (HPE) is the most common forebrain defect in humans. It results from incomplete midline cleavage of the prosencephalon. Methods A large European series of 645 HPE probands (and 699 relatives), consisting of 51% fetuses and 49% liveborn children, is reported. Results Mutations in the four main genes involved in HPE (SHH, ZIC2, SIX3, TGIF) were identified in 25% of cases. The SHH, SIX3, and TGIF mutations were inherited in more than 70% of these cases, whereas 70% of the mutations in ZIC2 occurred de novo. Moreover, rearrangements were detected in 22% of the 260 patients screened by array comparative genomic hybridisation. 15 probands had two mutations providing additional support for the ‘multiple-hit process’ in HPE. There was a positive correlation between the severity of the brain malformation and facial features for SHH, SIX3, and TGIF, but no such correlation was found for ZIC2 mutations. The most severe HPE types were associated with SIX3 and ZIC2 mutations, whereas microforms were associated with SHH mutations. The study focused on the associated brain malformations, including neuronal migration defects, which predominated in individuals with ZIC2 mutations, and neural tube defects, which were frequently associated with ZIC2 (rachischisis) and TGIF mutations. Extracraniofacial features were observed in 27% of the individuals in this series (up to 40% of those with ZIC2 mutations) and a significant correlation was found between renal/urinary defects and mutations of SHH and ZIC2. Conclusions An algorithm is proposed based on these new phenotype–genotype correlations, to facilitate molecular analysis and genetic counselling for HPE.


Human Mutation | 2009

CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation.

Soumaya Mougou-Zerelli; Sophie Thomas; Emmanuelle Szenker; Sophie Audollent; Nadia Elkhartoufi; Candice Babarit; S. Romano; Rémi Salomon; Jeanne Amiel; Chantal Esculpavit; Marie Gonzales; Estelle Escudier; Bruno Leheup; Philippe Loget; Sylvie Odent; Joëlle Roume; Marion Gerard; Anne-Lise Delezoide; Suonavy Khung; Sophie Patrier; Marie-Pierre Cordier; Raymonde Bouvier; Jelena Martinovic; Marie-Claire Gubler; Nathalie Boddaert; Arnold Munnich; Férechté Encha-Razavi; Enza Maria Valente; Ali Saad; Sophie Saunier

Meckel‐Gruber syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele, and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic “molar tooth sign” (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance. Allelism of MKS and JBS has been reported for TMEM67/MKS3, CEP290/MKS4, and RPGRIP1L/MKS5. Recently, one homozygous splice mutation with a founder effect was reported in the CC2D2A gene in Finnish fetuses with MKS, defining the 6th locus for MKS. Shortly thereafter, CC2D2A mutations were also reported in JBS. The analysis of the CC2D2A gene in our series of MKS fetuses, identified 14 novel truncating mutations in 11 cases. These results confirm the involvement of CC2D2A in MKS and reveal a major contribution of CC2D2A to the disease. We also identified three missense CC2D2A mutations in two JBS cases. Therefore, and in accordance with the data reported regarding RPGRIP1L, our results indicate phenotype–genotype correlations, as missense and presumably hypomorphic mutations lead to JBS while all null alleles lead to MKS. Hum Mutat 30:1–9, 2009.


Nature Genetics | 2014

The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation

Christel Thauvin-Robinet; Jaclyn S Lee; Estelle Lopez; Vicente Herranz-Pérez; Toshinobu Shida; Brunella Franco; Laurence Jego; Fan Ye; Laurent Pasquier; Philippe Loget; Nadège Gigot; Bernard Aral; Carla A. M. Lopes; Judith St-Onge; Ange-Line Bruel; Julien Thevenon; Susana González-Granero; Caroline Alby; Arnold Munnich; Michel Vekemans; Frédéric Huet; Andrew M. Fry; Sophie Saunier; Jean-Baptiste Rivière; Tania Attié-Bitach; Jose Manuel Garcia-Verdugo; Laurence Faivre; André Mégarbané; Maxence V. Nachury

Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia. How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth, whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation. Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, whereas OFD1 deletion leads to centriole hyperelongation, loss of C2CD3 results in short centrioles without subdistal and distal appendages. Because C2CD3 overexpression triggers centriole hyperelongation and OFD1 antagonizes this activity, we propose that C2CD3 directly promotes centriole elongation and that OFD1 acts as a negative regulator of C2CD3. Our results identify regulation of centriole length as an emerging pathogenic mechanism in ciliopathies.


Acta neuropathologica communications | 2014

Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly.

Catherine Fallet-Bianco; Annie Laquerrière; Karine Poirier; Ferechte Razavi; Fabien Guimiot; Patricia Dias; Laurence Loeuillet; Karine Lascelles; Cherif Beldjord; Nathalie Carion; Aurélie Toussaint; Nicole Revencu; Marie-Claude Addor; Benoit Lhermitte; Marie Gonzales; Jelena Martinovich; Bettina Bessières; Maryse Marcy-Bonnière; Frédérique Jossic; Pascale Marcorelles; Philippe Loget; Jamel Chelly; Nadia Bahi-Buisson

Complex cortical malformations associated with mutations in tubulin genes are commonly referred to as “Tubulinopathies”. To further characterize the mutation frequency and phenotypes associated with tubulin mutations, we studied a cohort of 60 foetal cases. Twenty-six tubulin mutations were identified, of which TUBA1A mutations were the most prevalent (19 cases), followed by TUBB2B (6 cases) and TUBB3 (one case). Three subtypes clearly emerged. The most frequent (n = 13) was microlissencephaly with corpus callosum agenesis, severely hypoplastic brainstem and cerebellum. The cortical plate was either absent (6/13), with a 2–3 layered pattern (5/13) or less frequently thickened (2/13), often associated with neuroglial overmigration (4/13). All cases had voluminous germinal zones and ganglionic eminences. The second subtype was lissencephaly (n = 7), either classical (4/7) or associated with cerebellar hypoplasia (3/7) with corpus callosum agenesis (6/7). All foetuses with lissencephaly and cerebellar hypoplasia carried distinct TUBA1A mutations, while those with classical lissencephaly harbored recurrent mutations in TUBA1A (3 cases) or TUBB2B (1 case). The third group was polymicrogyria-like cortical dysplasia (n = 6), consisting of asymmetric multifocal or generalized polymicrogyria with inconstant corpus callosum agenesis (4/6) and hypoplastic brainstem and cerebellum (3/6). Polymicrogyria was either unlayered or 4-layered with neuronal heterotopias (5/6) and occasional focal neuroglial overmigration (2/6). Three had TUBA1A mutations and 3 TUBB2B mutations. Foetal TUBA1A tubulinopathies most often consist in microlissencephaly or classical lissencephaly with corpus callosum agenesis, but polymicrogyria may also occur. Conversely, TUBB2B mutations are responsible for either polymicrogyria (4/6) or microlissencephaly (2/6).


Clinical Journal of The American Society of Nephrology | 2013

Severe Prenatal Renal Anomalies Associated with Mutations in HNF1B or PAX2 Genes

Leire Madariaga; Vincent Morinière; Cécile Jeanpierre; Raymonde Bouvier; Philippe Loget; Jelena Martinovic; Pierre Dechelotte; Nathalie Leporrier; Christel Thauvin-Robinet; Uffe Birk Jensen; Dominique Gaillard; Michèle Mathieu; Bruno Turlin; Tania Attié-Bitach; Rémi Salomon; Marie-Claire Gubler; Corinne Antignac; Laurence Heidet

BACKGROUND AND OBJECTIVES Congenital anomalies of the kidney and urinary tract (CAKUT) are a frequent cause of renal failure in children, and their detection in utero is now common with fetal screening ultrasonography. The clinical course of CAKUT detected before birth is very heterogeneous and depends on the level of nephron reduction. The most severe forms cause life-threatening renal failure, leading to perinatal death or the need for very early renal replacement therapy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study reports the screening of two genes (HNF1B and PAX2) involved in monogenic syndromic CAKUT in a cohort of 103 fetuses from 91 families with very severe CAKUT that appeared isolated by fetal ultrasound examination and led to termination of pregnancy. RESULTS This study identified a disease-causing mutation in HNF1B in 12 cases from 11 families and a mutation in PAX2 in 4 unrelated cases. Various renal phenotypes were observed, but no case of bilateral agenesis was associated with HNF1B or PAX2 mutations. Autopsy identified extrarenal abnormalities not detected by ultrasonography in eight cases but confirmed the absence of extrarenal defects in eight other cases. A positive family history of renal disease was not significantly more frequent in cases with an identified mutation. Moreover, in cases with an inherited mutation, there was a great phenotypic variability regarding the severity of the renal disease within a single family. CONCLUSIONS Our results suggest that mutations in genes involved in syndromic CAKUT with Mendelian inheritance are not rare in fetal cases with severe CAKUT appearing isolated at prenatal ultrasound, a finding of clinical importance because of genetic counseling.


Journal of Medical Genetics | 2012

NEK1 and DYNC2H1 are both involved in short rib polydactyly Majewski type but not in Beemer Langer cases

Joyce El Hokayem; Céline Huber; Adeline Couvé; Jacqueline Aziza; Geneviève Baujat; Raymonde Bouvier; Denise P. Cavalcanti; Felicity Collins; Marie-Pierre Cordier; Anne-Lise Delezoide; Marie Gonzales; Diana Johnson; Martine Le Merrer; Annie Levy-Mozziconacci; Philippe Loget; Dominique Martin-Coignard; Jelena Martinovic; Geert Mortier; Marie-José Perez; Joëlle Roume; Gioacchino Scarano; Arnold Munnich; Valérie Cormier-Daire

Background The lethal short rib polydactyly syndromes (SRP type I–IV) are characterised by notably short ribs, short limbs, polydactyly, multiple anomalies of major organs, and autosomal recessive mode of inheritance. Among them, SRP type II (Majewski; MIM 263520) is characterised by short ovoid tibiae or tibial agenesis and is radiographically closely related to SRP type IV (Beemer-Langer; MIM 269860) which is distinguished by bowed radii and ulnae and relatively well tubulated tibiae. NEK1 mutations have been recently identified in SRP type II. Double heterozygosity for mutations in both NEK1 and DYNC2H1 in one SRP type II case supported possible digenic diallelic inheritance. Methods The aim of this study was to screen DYNC2H1 and NEK1 in 13 SRP type II cases and seven SRP type IV cases. It was not possible to screen DYNC2H1 in two patients due to insufficient amount of DNA. Results The study identified homozygous NEK1 mutations in 5/13 SRP type II and compound heterozygous DYNC2H1 mutations in 4/12 cases. Finally, NEK1 and DYNC2H1 were excluded in 3/12 SRP type II and in all SRP type IV cases. The main difference between the mutation positive SRP type II group and the mutation negative SRP type II group was the presence of holoprosencephaly and polymycrogyria in the mutation negative group. Conclusion This study confirms that NEK1 is one gene causing SRP type II but also reports mutations in DYNC2H1, expanding the phenotypic spectrum of DYNC2H1 mutations. The exclusion of NEK1 and DYNC2H1 in 3/12 SRP type II and in all SRP type IV cases further support genetic heterogeneity.


Journal of Medical Genetics | 2011

RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects

Cécile Jeanpierre; Guillaume Macé; Mélanie Parisot; Vincent Morinière; Audrey Pawtowsky; Marion Benabou; Jelena Martinovic; Jeanne Amiel; Tania Attié-Bitach; Anne-Lise Delezoide; Philippe Loget; Patricia Blanchet; Dominique Gaillard; Marie Gonzales; Wassila Carpentier; Patrick Nitschke; Frédéric Tores; Laurence Heidet; Corinne Antignac; Rémi Salomon

Background The RET/GDNF signalling pathway plays a crucial role during development of the kidneys and the enteric nervous system. In humans, RET activating mutations cause multiple endocrine neoplasia, whereas inactivating mutations are responsible for Hirschsprung disease. RET mutations have also been reported in fetuses with renal agenesis, based on analysis of a small series of samples. Objective and methods To characterise better the involvement of RET and GDNF in kidney development defects, a series of 105 fetuses with bilateral defects, including renal agenesis, severe hypodysplasia or multicystic dysplastic kidney, was studied. RET and GDNF coding sequences, evolutionary conserved non-coding regions (ECRs) in promoters, 3′UTRs, and RET intron 1 were analysed. Copy number variations at these loci were also investigated. Results The study identified: (1) a low frequency (<7%) of potential mutations in the RET coding sequence, with inheritance from the healthy father for four of them; (2) no GDNF mutation; (3) similar allele frequencies in patients and controls for most single nucleotide polymorphism variants, except for RET intron 1 variant rs2506012 that was significantly more frequent in affected fetuses than in controls (6% vs 2%, p=0.01); (4) distribution of the few rare RET variants unidentified in controls into the various 5′-ECRs; (5) absence of copy number variations. Conclusion These results suggest that genomic alteration of RET or GDNF is not a major mechanism leading to renal agenesis and other severe kidney development defects. Analysis of a larger series of patients will be necessary to validate the association of the RET intron 1 variant rs2506012 with renal development defects.

Collaboration


Dive into the Philippe Loget's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelena Martinovic

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Férechté Encha-Razavi

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Pascale Marcorelles

University of Western Brittany

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tania Attié-Bitach

Necker-Enfants Malades Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge