Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Tchamitchian is active.

Publication


Featured researches published by Sylvie Tchamitchian.


Science | 2012

A Common Pesticide Decreases Foraging Success and Survival in Honey Bees

Mickaël Henry; Maxime Béguin; Fabrice Requier; Orianne Rollin; Jean-François Odoux; Pierrick Aupinel; Jean Aptel; Sylvie Tchamitchian; Axel Decourtye

Bad News for Bees Neonicotinoid insecticides were introduced in the early 1990s and have become one of the most widely used crop pesticides in the world. These compounds act on the insect central nervous system, and they have been shown to be persistent in the environment and in plant tissues. Recently, there have been controversial connections made between neonicotinoids and pollinator deaths, but the mechanisms underlying these potential deaths have remained unknown. Whitehorn et al. (p. 351, published online 29 March) exposed developing colonies of bumble bees to low levels of the neonicotinoid imidacloprid and then released them to forage under natural conditions. Treated colonies displayed reduced colony growth and less reproductive success, and they produced significantly fewer queens to found subsequent generations. Henry et al. (p. 348, published online 29 March) documented the effects of low-dose, nonlethal intoxication of another widely used neonicotinoid, thiamethoxam, on wild foraging honey bees. Radio-frequency identification tags were used to determine navigation success of treated foragers, which suggested that their homing success was much reduced relative to untreated foragers. Honey bees cannot find their way home after exposure to sublethal doses of a widely used insecticide. Nonlethal exposure of honey bees to thiamethoxam (neonicotinoid systemic pesticide) causes high mortality due to homing failure at levels that could put a colony at risk of collapse. Simulated exposure events on free-ranging foragers labeled with a radio-frequency identification tag suggest that homing is impaired by thiamethoxam intoxication. These experiments offer new insights into the consequences of common neonicotinoid pesticides used worldwide.


Apidologie | 2012

Neural effects of insecticides in the honey bee

Luc P. Belzunces; Sylvie Tchamitchian; Jean-Luc Brunet

During their foraging activity, honey bees are often exposed to direct and residual contacts with pesticides, especially insecticides, all substances specifically designed to kill, repel, attract or perturb the vital functions of insects. Insecticides may elicit lethal and sublethal effects of different natures that may affect various biological systems of the honey bee. The first step in the induction of toxicity by a chemical is the interaction between the toxic compound and its molecular target. The action on the molecular target can lead to the induction of observable or non-visible effects. The toxic substance may impair important processes involved in cognitive functions, behaviour or integrity of physiological functions. This review is focused on the neural effects of insecticides that have repercussions on (a) cognitive functions, including learning and memory, habituation, olfaction and gustation, navigation and orientation; (b) behaviour, including foraging and (c) physiological functions, including thermoregulation and muscle activity.


Scientific Reports | 2016

Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival.

Claudia Dussaubat; Alban Maisonnasse; Didier Crauser; Sylvie Tchamitchian; Marc Bonnet; Marianne Cousin; André Kretzschmar; Jean-Luc Brunet; Yves Le Conte

Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen’s capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen’s physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen’s fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors.


PLOS ONE | 2014

A Pragmatic Approach to Assess the Exposure of the Honey Bee (Apis mellifera) When Subjected to Pesticide Spray

Yannick Poquet; Laurent Bodin; Marc Tchamitchian; Marion Fusellier; Barbara Giroud; Florent Lafay; Audrey Buleté; Sylvie Tchamitchian; Marianne Cousin; Michel Pélissier; Jean-Luc Brunet; Luc P. Belzunces

Plant protection spray treatments may expose non-target organisms to pesticides. In the pesticide registration procedure, the honey bee represents one of the non-target model species for which the risk posed by pesticides must be assessed on the basis of the hazard quotient (HQ). The HQ is defined as the ratio between environmental exposure and toxicity. For the honey bee, the HQ calculation is not consistent because it corresponds to the ratio between the pesticide field rate (in mass of pesticide/ha) and LD50 (in mass of pesticide/bee). Thus, in contrast to all other species, the HQ can only be interpreted empirically because it corresponds to a number of bees/ha. This type of HQ calculation is due to the difficulty in transforming pesticide field rates into doses to which bees are exposed. In this study, we used a pragmatic approach to determine the apparent exposure surface area of honey bees submitted to pesticide treatments by spraying with a Potter-type tower. The doses received by the bees were quantified by very efficient chemical analyses, which enabled us to determine an apparent surface area of 1.05 cm2/bee. The apparent surface area was used to calculate the exposure levels of bees submitted to pesticide sprays and then to revisit the HQ ratios with a calculation mode similar to that used for all other living species. X-tomography was used to assess the physical surface area of a bee, which was 3.27 cm2/bee, and showed that the apparent exposure surface was not overestimated. The control experiments showed that the toxicity induced by doses calculated with the exposure surface area was similar to that induced by treatments according to the European testing procedure. This new approach to measure risk is more accurate and could become a tool to aid the decision-making process in the risk assessment of pesticides.


Ecotoxicology and Environmental Safety | 2016

Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined

Maria Teresa Renzi; Marcel Amichot; David Pauron; Sylvie Tchamitchian; Jean-Luc Brunet; André Kretzschmar; Stefano Maini; Luc P. Belzunces

In the agricultural environment, honey bees may be exposed to combinations of pesticides. Until now, the effects of these combinations on honey bee health have been poorly investigated. In this study, we assessed the impacts of biological and chemical insecticides, combining low dietary concentrations of Bacillus thuringiensis (Bt) spores (100 and 1000µg/L) with the chemical insecticide fipronil (1µg/L). In order to assess the possible effects of Cry toxins, the Bt kurstaki strain (Btk) was compared with a Bt strain devoid of toxin-encoding plasmids (Bt Cry(-)). The oral exposure to fipronil and Bt spores from both strains for 10 days did not elicit significant effects on the feeding behavior and survival after 25 days. Local and systemic physiological effects were investigated by measuring the activities of enzymes involved in the intermediary and detoxication metabolisms at two sampling dates (day 10 and day 20). Attention was focused on head and midgut glutathione-S-transferase (GST), midgut alkaline phosphatase (ALP), abdomen glyceraldehyde-3-phosphate dehydrogenase (GAPD) and glucose-6-phosphate dehydrogenase (G6PD). We found that Bt Cry(-) and Btk spores induced physiological modifications by differentially modulating enzyme activities. Fipronil influenced the enzyme activities differently at days 10 and 20 and, when combined with Bt spores, elicited modulations of some spore-induced physiological responses. These results show that an apparent absence of toxicity may hide physiological disruptions that could be potentially damaging for the bees, especially in the case of combined exposures to other environmental stressors.


Scientific Reports | 2016

Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential

Guillaume Kairo; Bertille Provost; Sylvie Tchamitchian; Faten Ben Abdelkader; Marc Bonnet; Marianne Cousin; Jacques Sénéchal; Pauline Benet; André Kretzschmar; Luc P. Belzunces; Jean-Luc Brunet

A species that requires sexual reproduction but cannot reproduce is doomed to extinction. The important increasing loss of species emphasizes the ecological significance of elucidating the effects of environmental stressors, such as pesticides, on reproduction. Despite its special reproductive behavior, the honey bee was selected as a relevant and integrative environmental model because of its constant and diverse exposure to many stressors due to foraging activity. The widely used insecticide Fipronil, the use of which is controversial because of its adverse effects on honey bees, was chosen to expose captive drones in hives via syrup contaminated at 0.1 μg/L and gathered by foragers. Such environmental exposure led to decreased spermatozoa concentration and sperm viability coupled with an increased sperm metabolic rate, resulting in drone fertility impairment. Subsequently, unexposed queens inseminated with such sperm exhibited fewer spermatozoa with lower viability in their spermatheca, leaving no doubt about the detrimental consequences for the reproductive potential of queens, which are key for colony sustainability. These findings suggest that pesticides could contribute to declining honey bee populations through fertility impairment, as exemplified by Fipronil. More broadly, reproductive disorders should be taken into consideration when investigating the decline of other species.


Environmental Toxicology and Chemistry | 2017

Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches: A case study of fipronil

Guillaume Kairo; Yannick Poquet; Haïthem Haji; Sylvie Tchamitchian; Marianne Cousin; Marc Bonnet; Michel Pélissier; André Kretzschmar; Luc P. Belzunces; Jean-Luc Brunet

Concern about the reproductive toxicity of plant protection products in honey bee reproducers is increasing. Because the reproductive capacity of honey bees is not currently considered during the risk assessment procedure performed during plant protection product registration, it is important to provide methods to assess such potential impairments. To achieve this aim, we used 2 different approaches that involved semifield and laboratory conditions to study the impact of fipronil on drone fertility. For each approach, the drones were reared for 20 d, from emergence to sexual maturity, and exposed to fipronil via a contaminated sugar solution. In both groups, the effects of fipronil were determined by studying life traits and fertility indicators. The results showed that the survival and maturity rates of the drones were better under laboratory conditions than under semifield conditions. Moreover, the drones reared under laboratory conditions produced more seminal fluid. Although these differences could be explained by environmental factors that may vary under semifield conditions, it was found that regardless of the approach used, fipronil did not affect survival rates, maturity rates, or semen volumes, whereas it did affect fertility by inducing a decrease in spermatozoa quantity that was associated with an increase in spermatozoa mortality. These results confirm that fipronil affects drone fertility and support the relevance of each approach for assessing the potential reproductive toxicity of plant protection products in honey bees. Environ Toxicol Chem 2017;36:2345-2351.


Scientific Reports | 2017

Nosema ceranae , Fipronil and their combination compromise honey bee reproduction via changes in male physiology

Guillaume Kairo; David G. Biron; Faten Ben Abdelkader; Marc Bonnet; Sylvie Tchamitchian; Marianne Cousin; Claudia Dussaubat; Boris Benoit; André Kretzschmar; Luc P. Belzunces; Jean-Luc Brunet

The honey bee is threatened by biological agents and pesticides that can act in combination to induce synergistic effects on its physiology and lifespan. The synergistic effects of a parasite/pesticide combination have been demonstrated on workers and queens, but no studies have been performed on drones despite their essential contribution to colony sustainability by providing semen diversity and quality. The effects of the Nosema ceranae/fipronil combination on the life traits and physiology of mature drones were examined following exposure under semi-field conditions. The results showed that the microsporidia alone induced moderate and localized effects in the midgut, whereas fipronil alone induced moderate and generalized effects. The parasite/insecticide combination drastically affected both physiology and survival, exhibiting an important and significant generalized action that could jeopardize mating success. In terms of fertility, semen was strongly impacted regardless of stressor, suggesting that drone reproductive functions are very sensitive to stress factors. These findings suggest that drone health and fertility impairment might contribute to poorly mated queens, leading to the storage of poor quality semen and poor spermathecae diversity. Thus, the queens failures observed in recent years might result from the continuous exposure of drones to multiple environmental stressors.


Environmental Toxicology and Chemistry | 2015

Wings as a new route of exposure to pesticides in the honey bee.

Yannick Poquet; Guillaume Kairo; Sylvie Tchamitchian; Jean-Luc Brunet; Luc P. Belzunces

In pesticide risk assessment, estimating the routes and levels of exposure is critical. For honey bees subjected to pesticide spray, toxicity is assessed by thorax contact to account for all possible contact exposures. In the present study, the authors tested 6 active substances with different hydrophobicity. For the first time, the authors demonstrated that it is possible to induce mortality by pesticide contact with only the wings of the honey bee. The toxicities induced by contact with the wings and thorax were similar, with the wing median lethal dose (LD50) being 0.99 to 2.23 times higher than that of the thorax. This finding demonstrates that the wings represent a relevant route of exposure in the honey bee. In a second approach, the authors estimated the air volume displaced by the wings during 1 beating cycle to be 0.51 ± 0.03 cm(3), which corresponds to a volume of 116.8 ± 5.8 cm(3)  s(-1) at a wing beat frequency of 230 Hz. The authors then tested realistic scenarios of exposure for bees flying through a pesticide cloud at different concentrations. In the worst-case scenario, the dose accumulated during the flight reached 525 ng bee(-1)  s(-1). These results show that the procedure used to assess the risk posed by contact with pesticides could be improved by accounting for wing exposure.


Pest Management Science | 2018

Efficiency of an air curtain as an anti-insect barrier: the honey bee as a model insect: Anti-insect air curtain

Guillaume Kairo; Maryline Pioz; Sylvie Tchamitchian; Michel Pélissier; Jean-Luc Brunet; Luc P. Belzunces

BACKGROUND Vector-borne diseases are of high concern for human, animal and plant health. In humans, such diseases are often transmitted by flying insects. Flying insects stop their flight when their kinetic energy cannot compensate for the wind speed. Here, the efficiency of an air curtain in preventing insects from entering a building was studied using the honey bee as a model. RESULTS Bees were trained to visit a food source placed in a building. The air curtain was tested with strongly motivated bees, when the visiting activity was very high. Airflow velocity was modulated by setting an air curtain device at different voltages. At the nominal voltage, the anti-insect efficiency was 99.9 ± 0.2% compared with both the number of bees at a given time in the absence of the air curtain and the number of bees before the activation of the air curtain. The efficiency decreased as the airflow velocity decreased. CONCLUSION The results show that an air curtain operating at an airflow velocity of 7.5 m s-1 may prevent a strong flyer with high kinetic energy, such as the honey bee, from entering a building. Thus, air curtains offer an alternative approach for combating vector-borne diseases.

Collaboration


Dive into the Sylvie Tchamitchian's collaboration.

Top Co-Authors

Avatar

Jean-Luc Brunet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Luc P. Belzunces

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marianne Cousin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Guillaume Kairo

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

André Kretzschmar

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marc Bonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Yannick Poquet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Faten Ben Abdelkader

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Michel Pélissier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Axel Decourtye

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge