Sylwia Wdowiak-Wróbel
Maria Curie-Skłodowska University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylwia Wdowiak-Wróbel.
Systematic and Applied Microbiology | 2013
Monika Marek-Kozaczuk; Agnieszka Leszcz; Jerzy Wielbo; Sylwia Wdowiak-Wróbel; Anna Skorupska
The taxonomic status of the Rhizobium sp. K3.22 clover nodule isolate was studied by multilocus sequence analysis (MLSA) of 16S rRNA and six housekeeping chromosomal genes, as well as by a subsequent phylogenic analysis. The results revealed full congruence with the Rhizobium pisi DSM 30132(T) core genes, thus supporting the same taxonomic position for both strains. However, the K3.22 plasmid symbiosis nod genes demonstrated high sequence similarity to Rhizobium leguminosarum sv. trifolii, whereas the R. pisi DSM 30132(T)nod genes were most similar to R. leguminosarum sv. viciae. The strains differed in the host range nodulation specificity, since strain K3.22 effectively nodulated red and white clover but not vetch, in contrast to R. pisi DSM 30132(T), which effectively nodulated vetch but was not able to nodulate clover. Both strains had the ability to form nodules on pea and bean but they differed in bean cultivar specificity. The R. pisi K3.22 and DSM 30132(T) strains might provide evidence for the transfer of R. leguminosarum sv. trifolii and sv. viciae symbiotic plasmids occurring in natural soil populations.
Archives of Microbiology | 2010
Bożena Mierzwa; Sylwia Wdowiak-Wróbel; Michał Kalita; Sebastian Gnat; Wanda Małek
The phylogeny of symbiotic genes of Robinia pseudoacacia (black locust) rhizobia derived from Poland and Japan was studied by comparative sequence analysis of nodA, nodC, nodH, and nifH loci. In phylogenetic trees, black locust symbionts formed a branch of their own suggesting that the spread and maintenance of symbiotic genes within Robinia pseudoacacia rhizobia occurred through vertical transmission. There was 99–100% sequence similarity for nodA genes of Robinia pseudoacacia nodulators, 97–98% for nodC, and 97–100% for nodH and nifH loci. A considerable sequence conservation of sym genes shows that the symbiotic apparatus of Robinia pseudoacacia rhizobia might have evolved under strong host plant constraints. In the nodA and nodC gene phylograms, Robinia pseudoacacia rhizobia grouped with Phaseolus sp. symbionts, although they were not closely related to our isolates based on 16S rRNA genes, and with Mesorhizobium amorphae. nifH gene phylogeny of our isolates followed the evolutionary history of 16S rDNA and Robinia pseudoacacia rhizobia grouped with Mesorhizobium genus species. Nodulation assays revealed that Robinia pseudoacacia rhizobia effectively nodulated their native host and also Amorpha fruticosa and Amorpha californica resulting in a significant enhancement of plant growth. The black locust root nodules are shown to be of indeterminate type.
PLOS ONE | 2015
Sebastian Gnat; Wanda Małek; Ewa Oleńska; Sylwia Wdowiak-Wróbel; Michał Kalita; Barbara Łotocka; Magdalena Wójcik
The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99–100% in the case of nodAC and nifH genes, and 98–99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar “glycyphyllae”, based on nodA and nodC genes sequences.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2010
Sylwia Wdowiak-Wróbel; Wanda Małek
A multilocus phylogenetic approach was applied to elucidate the phylogeny of Astragalus cicer rhizobia derived from Poland, Ukraine, and Canada. The strains selected for the studies represented three main geographically different phenons of these bacteria. Phylogenetic analyses were performed with three chromosomal housekeeping loci (16S rRNA, atpD, glnII) and three symbiotic genes located on a plasmid (nodA, nodC, nifH). The “core” and “auxiliary” gene trees revealed that A. cicer nodule isolates were intermingled with the strains of Mesorhizobium species, which implies that they are descendents of the same ancestor as mesorhizobia and fall into the Mesorhizobium genus. The noted congruence of the housekeeping and symbiotic gene phylogenies of A. cicer microsymbionts indicates that sym loci are transferred to these bacteria through vertical transmission without a significant participation of intergeneric horizontal gene spread. All the three sym gene sequences of the Polish and Ukrainian A. cicer nodule isolates were more closely related to one another than to the corresponding sequences of the Canadian isolates. The phylogeographic patterns of the sym genes of intercontinental strains point to their relatively long, separate, evolutionary history.
Current Microbiology | 2005
Wanda Małek; Ewa Sajnaga; Sylwia Wdowiak-Wróbel; Bożena Studzińska; Izabela Święcicka; Izabela Nosalewicz; Marta Słomka; Agnieszka Tatara; Antoni Gawron
Four virulent phages—ΦDl, ΦTl, ΦCYT21, and ΦOS6, infective on Sarothamnus scoparius rhizobia—were isolated from the soil and characterized for morphology, host range, rate of adsorption to bacterial cells, and genome size. New phages were separated into two morphological families: Siphoviridae with long, noncontractile tails (ΦDl, ΦTl) and Myoviridae with long, contractile tails (ΦCYT21, ΦOS6). They were also classified into two groups by a host specificity. One of them included viruses (ΦDl and ΦTl) that lysed S. scoparius bradyrhizobia and Bradyrhizobium sp. (Lupinus) strain Dl, and the second one comprised phages (ΦCYT21 and ΦOS6) that parasitized only Scotch broom native microsymbionts. Phages specific for S. scoparius rhizobia were differentiated not only by morphology and host range but also by a genome size that was in the range from 47,583 to 60,098 b.p.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2017
Sylwia Wdowiak-Wróbel; Monika Marek-Kozaczuk; Michał Kalita; Magdalena Karaś; Magdalena Wójcik; Wanda Małek
This is the first report describing isolates from root nodules of Ononis arvensis (field restharrow). The aim of this investigation was to describe the diversity, phylogeny, and plant growth promoting features of microsymbionts of O. arvensis, i.e., a legume plant growing in different places of the southern part of Poland. Twenty-nine bacterial isolates were characterized in terms of their phenotypic properties, genome fingerprinting, and comparative analysis of their 16S rRNA, nodC and acdS gene sequences. Based on the nodC and 16S rRNA gene phylogenies, the O. arvensis symbionts were grouped close to bacteria of the genera Rhizobium and Mesorhizobium, which formed monophyletic clusters. The acdS gene sequences of all the isolates tested exhibited the highest similarities to the corresponding gene sequences of genus Mesorhizobium strains. The presence of the acdS genes in the genomes of rhizobia specific for O. arvensis implies that these bacteria may promote the growth and development of their host plant in stress conditions. The isolated bacteria showed a high genomic diversity and, in the BOX-PCR reaction, all of them (except three) exhibited DNA fingerprints specific only for them. Our studies showed that restharrow isolates formed effective symbiotic interactions with their native host (O. arvensis) and Ononis spinosa but not with Trifolium repens and Medicago sativa belonging to the same tribe Trifolieae as Ononis species and not with Lotus corniculatus, representing the tribe Loteae.
International Journal of Systematic and Evolutionary Microbiology | 2016
Sebastian Gnat; Wanda Małek; Ewa Oleńska; Sylwia Wdowiak-Wróbel; Michał Kalita; Jerzy Rogalski; Magdalena Wójcik
In this study, the phylogenetic relationship and taxonomic status of six strains, representing different phenons and genomic groups of Astragalus glycyphyllos symbionts, originating from Poland, were established by comparative analysis of five concatenated housekeeping gene sequences (atpD, dnaK, glnA, recA and rpoB), DNA-DNA hybridization and total DNA G+C content. Maximum-likelihood phylogenetic analysis of combined atpD, dnaK, glnA, recA and rpoB sequence data placed the studied bacteria into the clade comprising the genus Mesorhizobium. In the core gene phylograms, four A. glycyphyllos nodule isolates (AG1, AG7, AG15 and AG27) formed a cluster common with Mesorhizobium ciceri, whereas the two other A. glycyphyllos symbionts (AG17 and AG22) were grouped together with Mesorhizobium amorphae and M. septentrionale. The species position of the studied bacteria was clarified by DNA-DNA hybridization. The DNA-DNA relatedness between isolates AG1, AG7, AG15 and AG27 and reference strain M. ciceri USDA 3383T was 76.4-84.2%, and all these A. glycyphyllos nodulators were defined as members of the genomospecies M. ciceri. DNA-DNA relatedness for isolates AG17 and AG22 and the reference strain M. amorphae ICMP 15022T was 77.5 and 80.1%, respectively. We propose that the nodule isolates AG17 and AG22 belong to the genomic species M. amorphae. Additionally, it was found that the total DNA G+C content of the six test A. glycyphyllos symbionts was 59.4-62.1 mol%, within the range for species of the genus Mesorhizobium.
Fems Immunology and Medical Microbiology | 2014
Marta Palusińska-Szysz; Agnieszka Zdybicka-Barabas; Małgorzata Cytryńska; Sylwia Wdowiak-Wróbel; Elżbieta Chmiel; Wiesław I. Gruszecki
Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2017
Monika Marek-Kozaczuk; Sylwia Wdowiak-Wróbel; Michał Kalita; Mykhaylo Chernetskyy; Kamil Deryło; Marek Tchórzewski; Anna Skorupska
Trifolium rubens L., commonly known as the red feather clover, is capable of symbiotic interactions with rhizobia. Up to now, no specific symbionts of T. rubens and their symbiotic compatibility with Trifolium spp. have been described. We characterized the genomic diversity of T. rubens symbionts by analyses of plasmid profiles and BOX–PCR. The phylogeny of T. rubens isolates was inferred based on the nucleotide sequences of 16S rRNA and two core genes (atpD, recA). The nodC phylogeny allowed classification of rhizobia nodulating T. rubens as Rhizobium leguminosarum symbiovar trifolii (Rlt). The symbiotic efficiency of the Rlt isolates was determined on four clover species: T. rubens, T. pratense, T. repens and T. resupinatum. We determined that Rlt strains formed mostly inefficient symbiosis with their native host plant T. rubens and weakly effective (sub-optimal) symbiosis with T. repens and T. pratense. The same Rlt strains were fully compatible in the symbiosis with T. resupinatum. T. rubens did not exhibit strict selectivity in regard to the symbionts and rhizobia closely related to Rhizobium grahamii, Rhizobium galegae and Agrobacterium radiobacter, which did not nodulate Trifolium spp., were found amongst T. rubens nodule isolates.
Journal of Basic Microbiology | 2016
Sylwia Wdowiak-Wróbel; Wanda Małek; Marta Palusińska-Szysz
In this study, the tolerance of Mesorhizobium sp. ACMP18, Mesorhizobium sp. USDA3350, and Mesorhizobium temperatum LMG23931 strains, to cold and freezing were investigated. The ability to withstand freezing at −20 °C and −70 °C for 24 months was different among the studied strains and depended on the cryoprotectant used. The survivability of mesorhizobial strains at −20 °C and −70 °C was significantly improved by some cryoprotectans (glycerol and sucrose/peptone). It is worth noting that the greatest resistance to freezing was detected when stress treatments were performed in glycerol as a cryoprotectant. Using PCR analysis, cspA genes were identified in the studied strains. Their nucleotide sequences were most similar to the sequences of the corresponding genes of the Mesorhizobium species. The expression of the cspA gene in the studied bacteria was analyzed using the RT‐PCR technique. The fatty acid composition of the mesorhizobia was determined at 5, 10, 15, and 28 °C. It was noticed that growth temperature significantly affected the fatty acid composition and the amounts of unsaturated fatty acids, especially that of cis‐vaccenic acid (18:1ɷ11), increased markedly in bacterial cells cultivated at 5, 10, and 15 °C.