Szu-Ming Yeh
National Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Szu-Ming Yeh.
Journal of Lightwave Technology | 2004
Szu-Ming Yeh; Yu-Kuan Lu; Sun-Yuan Huang; Hsueh-Hui Lin; Chao-Hsing Hsieh; Wood-Hi Cheng
This paper proposes a new scheme for the lensed fiber employing a quadrangular-pyramid-shaped fiber endface (QPSFE) for coupling between the high-power 980-nm laser diodes and the single-mode fibers (SMFs). The QPSFE was fabricated by grinding and polishing techniques and then heating in a fusing splicer to form an elliptical microlens endface. A coupling efficiency of 83% has been demonstrated. Based on the far-field profile measurements, the higher coupling efficiency of the QPSFE lensed fiber was attributed to the better matching of both the elliptical Gaussian field distribution and the aspect ratio between the laser source and the fiber lens, The advantage of the QPSFE structure was to be able to control two axial curvatures, and, therefore, this novel QPSFE can form any different aspect ratios of elliptical microlenses to match the far field of the high-power diode lasers as well as the commercial diode lasers used in lightwave communications.
Journal of Lightwave Technology | 2005
Szu-Ming Yeh; Sun-Yuan Huang; Wood-Hi Cheng
A new scheme for the lensed fiber employing a conical-wedge-shaped fiber endface (CWSFE) for coupling between the high-powered 980-nm laser diodes and single-mode fibers (SMFs) is proposed. The CWSFE was fabricated by following grinding and polishing techniques and then through heating in a fusing splicer to form an elliptical microlens endface. A coupling efficiency of 84% has been demonstrated. The higher coupling efficiency of the CWSFE lensed fiber was attributed to the better matching of both the elliptical Gaussian field distribution and the aspect ratio between the laser source and the fiber. In comparison to other fabrication techniques of lensed fiber used in high-power diode lasers, the advantages of this novel CWSFE structure are the ability to control over two axial curvatures and a small fiber offset through grinding and polishing processes to form a good elliptical endface. The results of this study have led to the development of a simple and reproducible fabrication process for achieving a high-yield and high-coupling CWSFE structure that is suitable for use in commercial high-power pump laser modules.
Optics Express | 2007
Yu-Kuan Lu; Ying-Chien Tsai; Yu-Da Liu; Szu-Ming Yeh; Chi-Chung Lin; Wood-Hi Cheng
A new scheme of asymmetric elliptic-cone-shaped microlens (AECSM) employing a single-step fabrication technique for efficient coupling between the high-power 980-nm laser diodes and the single-mode fibers is proposed. The AECSMs are fabricated by asymmetrically shaping the fiber during the single-step grinding process and elliptically lensing the fiber tip during the fusing process. A maximum coupling efficiency of 85% and a high-average coupling efficiency of 71% have been demonstrated for a 980-nm laser diode with a high aspect ratio of 5. In comparison with the previous works on asymmetric fiber microlenses fabricated by the multi-step processes with complicated fabrication, the advantages of the AECSM structure for achieving high coupling are a single-step fabrication, a reproducible process, and a high-yield output. Therefore, this AECSM can form different aspect ratios of asymmetric elliptical microlenses to match the far field of the high-power diode lasers that is suitable for use in commercial high-power pump laser modules.
IEEE Photonics Technology Letters | 2010
Yi-Chung Huang; Jau-Sheng Wang; Yen-Sheng Lin; Ting-Chien Lin; Wei-Lun Wang; Yu-Kuan Lu; Szu-Ming Yeh; Hsin-Hui Kuo; Sheng-Lung Huang; Wood-Hi Cheng
The fabrication of broadband single-mode Cr-doped silica fibers (SMCDSFs) using the fiber drawing-tower method with the modified rod-in-tube technique is demonstrated for the first time. A single-mode characteristic of SMCDSF was observed when the propagation wavelengths were longer than 1310 nm. The transmission loss was about 8 dB/m at 1550 nm. The successful fabrication of SMCDSFs may facilitate the possibility for utilizing the SMCDSFs as a new generation broadband fiber amplifier to cover the bandwidths in the whole 1300- to 1600-nm range of low-loss windows of silica fibers.
Optics Express | 2010
Chun-Hong Lee; Ching-Hsiang Chen; Chia-Lung Kao; Chin Ping Yu; Szu-Ming Yeh; Wood-Hi Cheng; Tsung-Hsien Lin
This work demonstrates photo alignment and electrical tuning effects in photonic liquid crystal fiber (PLCF). Applying voltages of 0 approximately 130V and 250 approximately 400V shifts the short and long wavelength edges of the transmission bands by about 45 nm and 74 nm toward longer wavelengths, respectively. An electro-tunable notch filter is formed in the PLCF without the use of gratings. The range of tunability of the notch filter is around 180 nm with an applied voltage of 140 approximately 240 V. This photo-induced alignment yields a permanently tilted LC structure in PCF, which reduces the threshold voltage, and can be further modulated by electric fields. The polarization dependent loss and fast response time of photo-aligned PLCF is also demonstrated. The finite-difference frequency-domain method is adopted to analyze the shift of the transmission bandgap, and the simulation results are found to correlate well with experimental data.
Journal of Lightwave Technology | 2012
Szu-Ming Yeh; Sheng-Lung Huang; Yi-Jen Chiu; Hidenori Taga; Pi Ling Huang; Yi-Chung Huang; Yu-Kuan Lu; Jui-Pin Wu; Wei-Lun Wang; De-Ming Kong; Kuang-Yao Huang; Jau-Sheng Wang; Pochi Yeh; Wood-Hi Cheng
We report the first experimental breakthrough of a net gain of optical signals in a broadband chromium-doped fiber amplifier (CDFA) for next-generation optical communication systems. Current fiber amplifiers, including commercial erbium-doped fiber amplifier, cover only a relatively small portion of the entire transmission bandwidths (1300-1600 nm) of the low-loss windows of silica fibers. The newly developed CDFAs have opened up the possibility of utilizing the 300-nm entire spectrum of the low-loss fibers to further increase the transmission capacity. In this paper, we present the experimental demonstration of a net gain of 1.2 dB employing gain enhancement technique. With the help of an optical-fiber system examination for the CDFA, a 40-Gb/s error-floor free data transmission was successfully demonstrated by realizing the high-speed transmission of signal with gain through the chromium-doped fibers (CDFs). Further gain improvement in the CDFAs employing few-mode or single-mode CDFs will be presented and discussed.
Optics Express | 2011
Shu-Ming Kuo; Yu-Wen Huang; Szu-Ming Yeh; Wood-Hi Cheng; Che-Hsin Lin
The optical transmission properties of photonic crystal fibers (PCFs) can be manipulated by modifying the pattern arrangement of the air channels within them. This paper presents a novel MEMS-based technique for modifying the optical transmission properties of commercial photonic-crystal fiber (PCF) by selectively filling the voids within the fiber structure with liquid crystals. In the proposed approach, an un-cured SU-8 ring pattern with a thickness of 5 μm is fabricated using a novel stamping method. The PCF is then brought into contact with the SU-8 pattern and an infra-red (IR) laser beam is passed through the fiber in order to soften the SU-8 surface; thereby selectively sealing some of the air channels with molten SU-8. Liquid crystals (LCs) are then infiltrated into the un-sealed holes in the PCF via capillary effects in order to modify the transmission properties of the PCF. Two selectively-filled PCFs are fabricated, namely an inner-ring LC-PCF and a single-line LC-PCF, respectively. It is shown that the two LC-PCFs exhibit significantly different optical behaviors. The practical applicability of the proposed selective-filling approach is demonstrated by fabricating an electric field sensor. The experimental results show that the sensor has the ability to measure electric fields with an intensity of up to 40 kV/cm.
optical fiber communication conference | 2011
Yi-Chung Huang; Jau-Sheng Wang; Kuei-Ming Chu; Ting-Chien Lin; Wei-Lun Wang; Ta-Lung Chou; Szu-Ming Yeh; Sheng-Lung Huang; Wood-Hi Cheng
The fabrication of Cr-doped fibers (CDFs) using fiber drawing-tower combined with non-silica powder-in-tube (PIT) technique to achieve the active application of chromium ions in fiber is demonstrated for the first time. The fluorescence enhancement, transmission loss, and few-mode operation are discussed in the paper. The success in fabrication of CDFs with PIT method may open the possibility for utilizing CDFs as broadband fiber light source.
Journal of Lightwave Technology | 2011
Yu-Da Liu; Ying-Chien Tsai; Yu-Kuan Lu; Li-Jin Wang; Ming-Chun Hsieh; Szu-Ming Yeh; Wood-Hi Cheng
A new scheme of a double-variable-curvature microlens (DVCM) employing a single-step grinding technique with fully automated fabrication for efficient coupling between high-power 980-nm laser diodes and single-mode fibers is proposed and demonstrated. The grinded fiber endface exhibited a double-variable curvature in the major axis, and was clearly observed for both major and minor axes after slight fusion polish. The perfect aspherical shape of the DVCM results in less grinding offset of 0.2 μm and better curvature radii control that leads to high average coupling efficiency of 83%. This clearly indicates that the performance of the DVCM can achieve high average coupling efficiency better than any other grinding techniques to form asymmetric microlenses. The versatility in double-variable-curvature design, fully automated fabrication, and the excellent performance of aspherical microlens makes the proposed DVCM extremely attractive for use in many lightwave interconnection applications.
Optics Letters | 2008
Szu-Ming Yeh; David Jui-Yang Feng; Yen-Chieh Huang; T. S. Lay; Sheng-Lung Huang; Pochi Yeh; Wood-Hi Cheng
We investigate the fundamental insertion loss due to mode mismatch in an optical link involving a single-mode fiber-optic (SMF) transmission with the insertion of a segment of a multimode Cr(4+)-doped fiber (MMCDF). With an MMCDF core diameter of approximately 15.5 microm that matches the SMF, we obtained coupling efficiencies of 60.3% to 87.5% in the entire transmission spectral range of 1,300 to 1,600 nm. The high coupling efficiency (or low insertion loss) makes it possible for the employment of the MMCDF as an inline ultrabroadband optical amplifier in an optical link for the entire transmission spectral range.