Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. A. Lister is active.

Publication


Featured researches published by T. A. Lister.


Astronomy and Astrophysics | 2016

Gaia Data Release 1 - Astrometry: one billion positions, two million proper motions and parallaxes

Lennart Lindegren; Uwe Lammers; U. Bastian; Jonay I. González Hernández; Sergei A. Klioner; David Hobbs; A. Bombrun; Daniel Michalik; M. Ramos-Lerate; A. G. Butkevich; G. Comoretto; E. Joliet; B. Holl; A. Hutton; P. Parsons; H. Steidelmüller; U. Abbas; M. Altmann; A. H. Andrei; S. Anton; N. Bach; C. Barache; Ugo Becciani; Jerome Berthier; Luciana Bianchi; M. Biermann; S. Bouquillon; G. Bourda; T. Brüsemeister; Beatrice Bucciarelli

Gaia Data Release 1 (Gaia DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase. We give a brief overview of the astrometric content of the data release and of the model assumptions, data processing, and validation of the results. For stars in common with the Hipparcos and Tycho-2 catalogues, complete astrometric single-star solutions are obtained by incorporating positional information from the earlier catalogues. For other stars only their positions are obtained by neglecting their proper motions and parallaxes. The results are validated by an analysis of the residuals, through special validation runs, and by comparison with external data. Results. For about two million of the brighter stars (down to magnitude ~11.5) we obtain positions, parallaxes, and proper motions to Hipparcos-type precision or better. For these stars, systematic errors depending e.g. on position and colour are at a level of 0.3 milliarcsecond (mas). For the remaining stars we obtain positions at epoch J2015.0 accurate to ~10 mas. Positions and proper motions are given in a reference frame that is aligned with the International Celestial Reference Frame (ICRF) to better than 0.1 mas at epoch J2015.0, and non-rotating with respect to ICRF to within 0.03 mas/yr. The Hipparcos reference frame is found to rotate with respect to the Gaia DR1 frame at a rate of 0.24 mas/yr. Based on less than a quarter of the nominal mission length and on very provisional and incomplete calibrations, the quality and completeness of the astrometric data in Gaia DR1 are far from what is expected for the final mission products. The results nevertheless represent a huge improvement in the available fundamental stellar data and practical definition of the optical reference frame.


The Astrophysical Journal | 2009

WASP-12b: The Hottest Transiting Extrasolar Planet Yet Discovered

L. Hebb; Andrew Collier-Cameron; B. Loeillet; Don Pollacco; G. Hébrard; R. A. Street; F. Bouchy; H. C. Stempels; C. Moutou; E. K. Simpson; S. Udry; Y. C. Joshi; Richard G. West; I. Skillen; D. M. Wilson; I. McDonald; N. P. Gibson; S. Aigrain; D. R. Anderson; Chris R. Benn; D. J. Christian; B. Enoch; C. A. Haswell; C. Hellier; K. Horne; J. Irwin; T. A. Lister; P. F. L. Maxted; Michel Mayor; A. J. Norton

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


Scopus | 2009

WASP-12b: The hottest transiting extrasolar planet yet discovered

L. Hebb; Andrew Collier-Cameron; H. C. Stempels; B. Enoch; K. Horne; N. Parley; B. Loeillet; C. Moutou; Don Pollacco; E. K. Simpson; Y. C. Joshi; N. P. Gibson; D. J. Christian; G. Hébrard; Francois Bouchy; R. A. Street; T. A. Lister; S. Udry; M. Mayor; D. Queloz; Richard G. West; I. Skillen; Chris R. Benn; D. M. Wilson; I. McDonald; Anderson; C. Hellier; P. F. L. Maxted; B. Smalley; S. Aigrain

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


The Astrophysical Journal | 2010

WASP-17b: AN ULTRA-LOW DENSITY PLANET IN A PROBABLE RETROGRADE ORBIT*

D. R. Anderson; C. Hellier; M. Gillon; A. H. M. J. Triaud; B. Smalley; L. Hebb; A. Collier Cameron; P. F. L. Maxted; D. Queloz; Richard G. West; S. J. Bentley; B. Enoch; K. Horne; T. A. Lister; M. Mayor; N. Parley; F. Pepe; Don Pollacco; D. Ségransan; S. Udry; D. M. Wilson

We report the discovery of the transiting giant planet WASP-17b, the least-dense planet currently known. It is 1.6 Saturn masses, but 1.5-2 Jupiter radii, giving a density of 6%-14% that of Jupiter. WASP-17b is in a 3.7 day orbit around a sub-solar metallicity, V = 11.6, F6 star. Preliminary detection of the Rossiter-McLaughlin effect suggests that WASP-17b is in a retrograde orbit (λ –150°), indicative of a violent history involving planet-planet or star-planet scattering. WASP-17bs bloated radius could be due to tidal heating resulting from recent or ongoing tidal circularization of an eccentric orbit, such as the highly eccentric orbits that typically result from scattering interactions. It will thus be important to determine more precisely the current orbital eccentricity by further high-precision radial velocity measurements or by timing the secondary eclipse, both to reduce the uncertainty on the planets radius and to test tidal-heating models. Owing to its low surface gravity, WASP-17bs atmosphere has the largest scale height of any known planet, making it a good target for transmission spectroscopy.


Nature | 2009

An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b

C. Hellier; D. R. Anderson; A. Collier Cameron; Michaël Gillon; L. Hebb; P. F. L. Maxted; D. Queloz; B. Smalley; A. H. M. J. Triaud; Richard G. West; D. M. Wilson; S. J. Bentley; B. Enoch; K. Horne; J. Irwin; T. A. Lister; Michel Mayor; N. Parley; F. Pepe; Don Pollacco; D. Ségransan; S. Udry; P. J. Wheatley

The ‘hot Jupiters’ that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet–planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only ∼0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94 days and a mass of ten Jupiter masses (10 MJup), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 106, as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.


Astronomy and Astrophysics | 2018

Gaia Data Release 2 - The astrometric solution

Lennart Lindegren; Jonay I. González Hernández; A. Bombrun; Sergei A. Klioner; U. Bastian; M. Ramos-Lerate; A. De Torres; H. Steidelmüller; C. Stephenson; David Hobbs; Uwe Lammers; M. Biermann; R. Geyer; T. Hilger; Daniel Michalik; U. Stampa; Paul J. McMillan; J. Castañeda; M. Clotet; G. Comoretto; M. Davidson; C. Fabricius; G. Gracia; Nigel Hambly; A. Hutton; André Mora; J. Portell; F. van Leeuwen; U. Abbas; A. Abreu

Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task. Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.


Monthly Notices of the Royal Astronomical Society | 2011

Stellar rotation in the Hyades and Praesepe: gyrochronology and braking time-scale

P. Delorme; A. Collier Cameron; L. Hebb; J. W. Rostron; T. A. Lister; A. J. Norton; Don Pollacco; Richard G. West

We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters’ isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of � 600Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J − Ks colour and rotation period in the F,G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the age of Hyades and Praesepe. In the case of the Hyades our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour�


Scopus | 2011

Stellar rotation in the Hyades and Praesepe: Gyrochronology and braking time-scale

Andrew Collier Cameron; J. W. Rostron; L. Hebb; T. A. Lister; A. J. Norton; Don Pollacco; Richard G. West

We present the results of photometric surveys for stellar rotation in the Hyades and in Praesepe, using data obtained as part of the SuperWASP exoplanetary transit-search programme. We determined accurate rotation periods for more than 120 sources whose cluster membership was confirmed by common proper motion and colour-magnitude fits to the clusters’ isochrones. This allowed us to determine the effect of magnetic braking on a wide range of spectral types for expected ages of � 600Myr for the Hyades and Praesepe. Both clusters show a tight and nearly linear relation between J − Ks colour and rotation period in the F,G and K spectral range. This confirms that loss of angular momentum was significant enough that stars with strongly different initial rotation rates have converged to the same rotation period for a given mass, by the age of Hyades and Praesepe. In the case of the Hyades our colour-period sequence extends well into the M dwarf regime and shows a steep increase in the scatter of the colour�


Nature | 2010

A transiting giant planet with a temperature between 250 K and 430 K

Hans J. Deeg; Claire Moutou; A. Erikson; Sz. Csizmadia; B. Tingley; P. Barge; H. Bruntt; M. Havel; S. Aigrain; J. M. Almenara; R. Alonso; M. Auvergne; A. Baglin; M. Barbieri; Willy Benz; A. S. Bonomo; P. Bordé; F. Bouchy; J. Cabrera; L. Carone; S. Carpano; David R. Ciardi; M. Deleuil; R. Dvorak; S. Ferraz-Mello; M. Fridlund; D. Gandolfi; J.C. Gazzano; Michaël Gillon; P. Gondoin

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274 days on a low eccentricity of 0.11 ± 0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a ‘temperate’ photospheric temperature estimated to be between 250 and 430 K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn.


Monthly Notices of the Royal Astronomical Society | 2009

The main-sequence rotation-colour relation in the Coma Berenices open cluster

A. Collier Cameron; V. A. Davidson; L. Hebb; G. Skinner; D. R. Anderson; D. J. Christian; W. I. Clarkson; B. Enoch; J. Irwin; Y. C. Joshi; C. A. Haswell; C. Hellier; K. Horne; S. R. Kane; T. A. Lister; P. F. L. Maxted; A. J. Norton; N. Parley; Don Pollacco; R. Ryans; Alexander Scholz; I. Skillen; B. Smalley; R. A. Street; Richard G. West; D. M. Wilson; P. J. Wheatley

We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (similar to 600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J - K colour with an rms scatter of only 2 per cent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling time-scale for angular momentum transport from a rapidly spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, and that from the age of Coma onwards stars rotate effectively as solid bodies. The existence of a tight relationship between stellar mass and rotation period at a given age supports the use of stellar rotation period as an age indicator in F, G and K stars of Hyades age and older. We demonstrate that individual stellar ages can be determined within the Coma population with an internal precision of the order of 9 per cent (rms), using a standard magnetic braking law in which rotation period increases with the square root of stellar age. We find that a slight modification to the magnetic-braking power law, P proportional to t0.56, yields rotational and asteroseismological ages in good agreement for the Sun and other stars of solar age for which p-mode studies and photometric rotation periods have been published.

Collaboration


Dive into the T. A. Lister's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. A. Street

Las Cumbres Observatory Global Telescope Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Udry

University of Geneva

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge