T.B. Lawson
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T.B. Lawson.
Astroparticle Physics | 2007
D. Yu. Akimov; G. J. Alner; H.M. Araújo; A. Bewick; C. Bungau; A. A. Burenkov; M.J. Carson; H. Chagani; V. Chepel; D. Cline; D. Davidge; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; C. Chag; R. Hollingworth; A.S. Howard; W.G. Jones; M. Joshi; K. Mavrokoridis; E.V. Korolkova; A. G. Kovalenko; V.A. Kudryavtsev; I. S. Kuznetsov; T.B. Lawson; V. N. Lebedenko; J.D. Lewin; P. K. Lightfoot
We present details of the technical design, manufacture and testing of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting particles and radiation. The instrument design is driven by both the physics requirements and by the technology requirements surrounding the use of liquid xenon. These include considerations of key performance parameters, such as the efficiency of scintillation light collection, restrictions placed on the use of materials to control the inherent radioactivity levels, attainment of high vacuum levels and chemical contamination control. The successful solution has involved a number of novel design and manufacturing features which will be of specific use to future generations of direct dark matter search experiments as they struggle with similar and progressively more demanding requirements.
Physics Letters B | 2005
G. J. Alner; H.M. Araújo; G. Arnison; J. C. Barton; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; D. Davidge; Gavin Davies; J.C. Davies; E. Daw; J. Dawson; Christopher D. P. Duffy; T. Durkin; T. Gamble; S.P. Hart; R. Hollingworth; G.J. Homer; A.S. Howard; I. Ivaniouchenkov; W.G. Jones; M. Joshi; J. Kirkpatrick; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; M J Lehner; J.D. Lewin; P. K. Lightfoot
The NAIAD experiment (NaI Advanced Detector) for WIMP dark matter searches at the Boulby Underground Laboratory (North Yorkshire, UK) ran from 2000 until 2003. A total of 44.9 kg x years of data collected with 2 encapsulated and 4 unencapsulated NaI(Tl) crystals with high light yield were included in the analysis. We present final results of this analysis carried out using pulse shape discrimination. No signal associated with nuclear recoils from WIMP interactions was observed in any run with any crystal. This allowed us to set upper limits on the WIMP-nucleon spin-independent and WIMP-proton spin-dependent cross-sections. The NAIAD experiment has so far imposed the most stringent constraints on the spin-dependent WIMP-proton cross-section.
Astroparticle Physics | 2004
M.J. Carson; J.C. Davies; E. Daw; R. Hollingworth; V.A. Kudryavtsev; T.B. Lawson; P. K. Lightfoot; J.E. McMillan; B. Morgan; S. M. Paling; M. Robinson; N.J.C. Spooner; D. R. Tovey
Abstract Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (α,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 10 −9 –10 −10 pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.
Astroparticle Physics | 2007
S. Burgos; J. Forbes; C. Ghag; M. Gold; V.A. Kudryavtsev; T.B. Lawson; D. Loomba; P. Majewski; D. Muna; A. St. J. Murphy; G. Nicklin; S. M. Paling; A. Petkov; S.J.S. Plank; M. Robinson; N. Sanghi; N.J.T. Smith; D.P. Snowden-Ifft; N.J.C. Spooner; T. J. Sumner; J. Turk; E. Tziaferi
Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94±2(stat.)±5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60 Co gamma-rays with a rejection factor of better than 8!10 -6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222 Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001
V.A. Kudryavtsev; N.J.C. Spooner; D. R. Tovey; J.W. Roberts; M J Lehner; J.E. McMillan; P. K. Lightfoot; T.B. Lawson; C.D. Peak; R. Lüscher; Jerome C. Barton
Abstract We report a study of CsI(Tl) scintillator to assess its applicability in experiments to search for dark matter particles. Measurements of the mean scintillation pulse shapes due to nuclear and electron recoils have been performed. We find that, as with NaI(Tl), pulse shape analysis can be used to discriminate between electron and nuclear recoils down to 4 keV. However, the discrimination factor is typically 10–15% better than in NaI(Tl) above 4 keV. The quenching factor for caesium and iodine recoils was measured and found to increase from 11% to ∼17% with decreasing recoil energy from 60 to 12 keV. Based on these results, the potential sensitivity of CsI(Tl) to dark matter particles in the form of neutralinos was calculated. We find an improvement over NaI(Tl) for the spin-independent WIMP–nucleon interactions up to a factor of 5 assuming comparable electron background levels in the two scintillators.
Astroparticle Physics | 2006
H.M. Araújo; D. Yu. Akimov; G. J. Alner; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; V. Chepel; H. Chagani; D. Davidge; J.C. Davies; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; C. Ghag; R. Hollingworth; A.S. Howard; W.G. Jones; M. Joshi; J. Kirkpatrick; A. G. Kovalenko; V.A. Kudryavtsev; V. N. Lebedenko; T.B. Lawson; J.D. Lewin; P. K. Lightfoot; A. Lindote; I. Liubarsky
We present results from a GEANT4-based Monte Carlo tool for end-to-end simulations of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase detector which measures both the scintillation light and the ionisation charge generated in liquid xenon by interacting particles and radiation. The software models the instrument response to radioactive backgrounds and calibration sources, including the generation, ray-tracing and detection of the primary and secondary scintillations in liquid and gaseous xenon, and subsequent processing by data acquisition electronics. A flexible user interface allows easy modification of detector parameters at run time. Realistic datasets can be produced to help with data analysis, an example of which is the position reconstruction algorithm developed from simulated data. We present a range of simulation results confirming the original design sensitivity of a few times 10−8 pb to the WIMP-nucleon cross-section.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2009
S. Burgos; E. Daw; J. Forbes; C. Ghag; M. Gold; C. Hagemann; V.A. Kudryavtsev; T.B. Lawson; D. Loomba; P. Majewski; D. Muna; A. St. J. Murphy; G. Nicklin; S. M. Paling; A. Petkov; S.J.S. Plank; M. Robinson; N. Sanghi; D.P. Snowden-Ifft; N.J.C. Spooner; J. Turk; E. Tziaferi
The Directional Recoil Identification From Tracks (DRIFT) collaboration utilizes low-pressure gaseous detectors to search for Weakly Interacting Massive Particle (WIMP) dark matter with directional signatures. A 252Cf neutron source was placed on each of the principal axes of a DRIFT detector in order to test its ability to measure directional signatures from the three components of very low-energy (∼keV/amu) recoil ranges. A high trigger threshold and the event selection procedure ensured that only sulfur recoils were analyzed. Sulfur recoils produced in the CS2 target gas by the 252Cf source closely match those expected from massive WIMP induced sulfur recoils. For each orientation of the source, with a threshold of ∼50 keV, a directional signal from the range components was observed, indicating that the detector has directional capability along all three axes, though in one direction the directionality was marginal. An analysis of these results yields an optimal orientation for DRIFT detectors when searching for a directional signature from WIMPs. Additional energy dependent information is provided to aid in understanding this effect.
Physics Letters B | 2007
G. J. Alner; H.M. Araújo; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; R. Cashmore; H. Chagani; V. Chepel; D. Cline; D. Davidge; J.C. Davies; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; J. Gao; C. Ghag; A.S. Howard; W.G. Jones; M. Joshi; E.V. Korolkova; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; J.D. Lewin; P. K. Lightfoot; A. Lindote; I. Liubarsky
The first underground data run of the ZEPLIN-II experiment has set a limit on the nuclear recoil rate in the two-phase xenon detector for direct dark matter searches. In this Letter the results from this run are converted into the limits on spin-dependent WIMP-proton and WIMP-neutron cross-sections. The minimum of the curve for WIMP-neutron cross-section corresponds to 7 × 10−2 pb at a WIMP mass of around 65 GeV.
Nuclear Physics B - Proceedings Supplements | 2001
R. Lüscher; B. Ahmed; Tarig Ali; G. J. Alner; J.C. Barton; A. Bewick; D. Davidge; J. Dawson; T. Gamble; S.T. Hart; A.S. Howard; I. Ivaniouchenkov; W. G. Jones; M. Joshi; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; M J Lehner; J.D. Lewin; P. K. Lightfoot; I. Liubarsky; J.E. McMillan; C.D. Peak; R. Preece; J. J. Quenby; J.W. Roberts; N.J.T. Smith; P.F. Smith; N.C.J. Spooner; T. Summer
Abstract A Liquid Xenon based WIMP detector diagnostic array is currently developed by the UKDMC with the help of international collaborators. After a brief reminder on the detection principle in Liquid Xenon, the individual detectors will be described. ZEPLIN I, a detector with a 4 kg fiducial mass with a background discrimination based on Pulse Shape Analysis, is already underground and starting operation. Two setups with improved background discrimination tools (as the ionisation is also recorded) are designed and scheduled to move underground in the second half of 2001. Both of them, ZEPLIN II and ZEPLIN III, are predicted to be sensitive to rate of 0.1–0.01 events/kg/day within 2 years of data taking. Furthermore, new ideas for lower background readout devices are studied, in order to avoid the use of PhotoMultiplier Tubes (PMTs).
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008
G. J. Alner; H.M. Araújo; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; H. Chagani; V. Chepel; D. Cline; D. Davidge; J.C. Davies; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; J. Gao; C. Ghag; W.G. Jones; M. Joshi; E.V. Korolkova; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; J.D. Lewin; P. K. Lightfoot; A. Lindote; I. Liubarsky; M.I. Lopes; R. Lüscher
ZEPLIN II is a two-phase (liquid/gas) xenon dark matter detector searching for WIMP-nucleon interactions. In this paper we describe the data acquisition system used to record the data from ZEPLIN II and the reduction procedures which parameterise the data for subsequent analysis.