T. G. Tan
American Association of Variable Star Observers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. G. Tan.
The Astrophysical Journal | 2012
J. C. Yee; Y. Shvartzvald; Avishay Gal-Yam; I. A. Bond; A. Udalski; S. Kozłowski; C. Han; A. Gould; J. Skowron; D. Suzuki; F. Abe; D. P. Bennett; C. S. Botzler; P. Chote; M. Freeman; A. Fukui; K. Furusawa; Y. Itow; S. Kobara; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; K. Ohmori; K. Ohnishi; N. J. Rattenbury; To. Saito; D. J. Sullivan; T. Sumi
Mathematical and Physical Sciences: 1st Place (The Ohio State University Edward F. Hayes Graduate Research Forum)
Nature | 2017
Jason A. Dittmann; J. Irwin; David Charbonneau; Xavier Bonfils; N. Astudillo-Defru; Raphaëlle D. Haywood; Zachory K. Berta-Thompson; Elisabeth R. Newton; Joseph E. Rodriguez; Jennifer G. Winters; T. G. Tan; J. M. Almenara; F. Bouchy; Xavier Delfosse; Thierry Forveille; Christophe Lovis; F. Murgas; F. Pepe; N. C. Santos; S. Udry; A. Wünsche; Gilbert A. Esquerdo; David W. Latham; Courtney D. Dressing
M dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future.
The Astrophysical Journal | 2013
C. Han; A. Udalski; J.-Y. Choi; J. C. Yee; A. Gould; G. W. Christie; T. G. Tan; M. K. Szymański; M. Kubiak; I. Soszyński; G. Pietrzyński; R. Poleski; K. Ulaczyk; P. Pietrukowicz; S. Kozłowski; J. Skowron; Ł. Wyrzykowski; L. A. Almeida; V. Batista; D. L. DePoy; Subo Dong; J. Drummond; B. S. Gaudi; K.-H. Hwang; F. Jablonski; Y. K. Jung; C.-U. Lee; Jae-Rim Koo; J. McCormick; L. A. G. Monard
We report the discovery of a planetary system from observation of the high-magnification microlensing event OGLE-2012-BLG-0026. The lensing light curve exhibits a complex central perturbation with multiple features. We find that the perturbation was produced by two planets located near the Einstein ring of the planet host star. We identify four possible solutions resulting from the well-known close/wide degeneracy. By measuring both the lens parallax and the Einstein radius, we estimate the physical parameters of the planetary system. According to the best-fit model, the two planet masses are ~0.11 M J and 0.68 M J and they are orbiting a G-type main-sequence star with a mass ~0.82 M ☉. The projected separations of the individual planets are beyond the snow line in all four solutions, being ~3.8 AU and 4.6 AU in the best-fit solution. The deprojected separations are both individually larger and possibly reversed in order. This is the second multi-planet system with both planets beyond the snow line discovered by microlensing. This is the only such system (other than the solar system) with measured planet masses without sin i degeneracy. The planetary system is located at a distance 4.1 kpc from the Earth toward the Galactic center. It is very likely that extra light from stars other than the lensed star comes from the lens itself. If this is correct, it will be possible to obtain detailed information about the planet host star from follow-up observation.
Science | 2014
A. Gould; A. Udalski; I. G. Shin; I. Porritt; J. Skowron; C. Han; J. C. Yee; S. Kozłowski; J. Y. Choi; R. Poleski; Ł. Wyrzykowski; K. Ulaczyk; P. Pietrukowicz; P. Mróz; M. K. Szymański; M. Kubiak; I. Soszyński; G. Pietrzyński; B. S. Gaudi; G. W. Christie; J. Drummond; J. McCormick; T. Natusch; H. Ngan; T. G. Tan; M. D. Albrow; D. L. DePoy; K.-H. Hwang; Y. K. Jung; C.-U. Lee
Impolite planet ignores hosts partner Many known exoplanets (planets outside our own solar system) are hosted by binary systems that contain two stars. These planets normally circle around both of their stars. Using microlensing data taken with a worldwide network of telescopes, Gould et al. found a planet twice the mass of Earth that circles just one of a pair of stars. The same approach has the potential to uncover other similar star systems and help to illuminate some of the mysteries of planet formation. Science, this issue p. 46 Microlensing observations reveal an exoplanet twice the mass of Earth circling just one member of a binary system. Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth’s) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet’s temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.
The Astronomical Journal | 2014
A. Jordán; R. Brahm; G. Á. Bakos; D. Bayliss; K. Penev; J. D. Hartman; G. Zhou; L. Mancini; M. Mohler-Fischer; S. Ciceri; Bun’ei Sato; Z. Csubry; M. Rabus; V. Suc; Néstor Espinoza; W. Bhatti; M. de Val Borro; Lars A. Buchhave; B. Csák; Th. Henning; Brian Paul Schmidt; T. G. Tan; Robert W. Noyes; B. Béky; R. P. Butler; Stephen A. Shectman; Jeffrey D. Crane; Ian B. Thompson; A. Williams; R. Martin
Development of the HATSouth project was funded by NSFMRI grant NSF/AST-0723074, operations have been supported by NASA grants NNX09AB29G and NNX12AH91H, and followup observations receive partial support from grant NSF/AST- 1108686. A.J. acknowledges support from FONDECYT project 1130857, BASAL CATA PFB-06, and projects IC120009 “Millennium Institute of Astrophysics (MAS)” and P10-022-F of the Millennium Science Initiative, Chilean Ministry of Economy. R.B. and N.E. are supported by CONICYT-PCHA/Doctorado Nacional. R.B. acknowledges additional support from Nucleus P10-022-F of the Millennium Science Initiative, Chilean Ministry of Economy. V.S. acknowledges support form BASAL CATA PFB-06. M.R. acknowledges support from FONDECYT postdoctoral fellowship 3120097. Australian access to the Magellan Telescopeswas supported through the National Collaborative Research Infrastructure Strategy of the Australian Federal Government. Work at the Australian National University is supported by ARC Laureate Fellowship Grant FL0992131. We acknowledge the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the RobertMartin Ayers Sciences Fund, NASA’s Astrophysics Data System Bibliographic Services, and the SIMBADdatabase, operated at CDS, Strasbourg, France. Operations at the MPG/ESO 2.2 m Telescope are jointly performed by the Max Planck Gesellschaft and the European Southern Observatory.
Monthly Notices of the Royal Astronomical Society | 2013
G. Zhou; D. Bayliss; J. D. Hartman; G. Á. Bakos; K. Penev; Z. Csubry; T. G. Tan; Andrés Jordán; L. Mancini; M. Rabus; R. Brahm; Néstor Espinoza; M. Mohler-Fischer; S. Ciceri; V. Suc; B. Csák; Th. Henning; Brian Paul Schmidt
Development of the HATSouth project was funded by NSF MRI grant NSF/AST-0723074, operations are supported by NASA grant NNX09AB29G and follow-up observations receive partial support from grant NSF/AST-1108686. Work at the Australian National University is supported by ARC Laureate Fellowship Grant FL0992131. Follow-up observations with the ESO 2.2 m/FEROS instrument were performed under MPI guaranteed time [P087.A9014(A), P088.A-9008(A), P089.A-9008(A)]. AJ acknowledges support from FONDECYT project 1130857, BASAL CATA PFB06 and the Millenium Science Initiative, Chilean Ministry of Economy (Nuclei: P10-022-F, P07-021-F). RB and NE are supported by CONICYT-PCHA/Doctorado Nacional and MR is supported by FONDECYT postdoctoral fellowship 3120097. We acknowledge the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund, and the SIMBAD data base, operated at CDS, Strasbourg, France. Operations at the MPG/ESO 2.2 m telescope are jointly performed by the Max Planck Gesellschaft and the European Southern Observatory.
Nature | 2017
B. Scott Gaudi; Keivan G. Stassun; Karen A. Collins; Thomas G. Beatty; George Zhou; David W. Latham; Allyson Bieryla; Jason D. Eastman; Robert J. Siverd; Justin R. Crepp; Erica J. Gonzales; Daniel J. Stevens; Lars A. Buchhave; Joshua Pepper; Marshall C. Johnson; Knicole D. Colón; Eric L. N. Jensen; Joseph E. Rodriguez; V. Bozza; Sebastiano Calchi Novati; G. D’Ago; Mary Thea Dumont; Tyler Ellis; Clement Gaillard; Hannah Jang-Condell; David H. Kasper; A. Fukui; Joao Gregorio; Ayaka Ito; John F. Kielkopf
The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300–10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated–traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.
The Astronomical Journal | 2015
J. D. Hartman; D. Bayliss; R. Brahm; G. Á. Bakos; L. Mancini; A. Jordán; K. Penev; M. Rabus; G. Zhou; R. P. Butler; Néstor Espinoza; M. de Val-Borro; W. Bhatti; Z. Csubry; S. Ciceri; Th. Henning; Brian Paul Schmidt; Pamela Arriagada; Stephen A. Shectman; Jeffrey D. Crane; Ian B. Thompson; V. Suc; B. Csák; T. G. Tan; Robert W. Noyes; J. Lázár; I. Papp; P. Sári
We report the discovery by the HATSouth survey of HATS-6b, an extrasolar planet transiting a V=15.2 mag, i=13.7 mag M1V star with a mass of 0.57 Msun and a radius of 0.57 Rsun. HATS-6b has a period of P = 3.3253 d, mass of Mp=0.32 Mjup, radius of Rp=1.00 Rjup, and zero-albedo equilibrium temperature of Teq=712.8+-5.1 K. HATS-6 is one of the lowest mass stars known to host a close-in gas giant planet, and its transits are among the deepest of any known transiting planet system. We discuss the follow-up opportunities afforded by this system, noting that despite the faintness of the host star, it is expected to have the highest K-band S/N transmission spectrum among known gas giant planets with Teq < 750 K. In order to characterize the star we present a new set of empirical relations between the density, radius, mass, bolometric magnitude, and V, J, H and K-band bolometric corrections for main sequence stars with M < 0.80 Msun, or spectral types later than K5. These relations are calibrated using eclipsing binary components as well as members of resolved binary systems. We account for intrinsic scatter in the relations in a self-consistent manner. We show that from the transit-based stellar density alone it is possible to measure the mass and radius of a ~0.6 Msun star to ~7% and ~2% precision, respectively. Incorporating additional information, such as the V-K color, or an absolute magnitude, allows the precision to be improved by up to a factor of two.
Monthly Notices of the Royal Astronomical Society | 2016
Rudolf B. Kuhn; Joseph E. Rodriguez; Karen A. Collins; Michael B. Lund; Robert J. Siverd; Knicole D. Colón; Joshua Pepper; Keivan G. Stassun; Phillip A. Cargile; D. J. James; K. Penev; George Zhou; D. Bayliss; T. G. Tan; Ivan A. Curtis; S. Udry; D. Ségransan; Dimitri Mawet; Saurav Dhital; Jack Soutter; Rhodes Hart; B. D. Carter; B. Scott Gaudi; Gordon Myers; Thomas G. Beatty; Jason D. Eastman; Daniel E. Reichart; Joshua B. Haislip; John F. Kielkopf; Allyson Bieryla
We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with T_(eff) = 5948 ± 74 K, log g = 4.319^(+0.020)_(−0.030) and [Fe/H] = 0.09^(+0.11)_(−0.10), an inferred mass M^* = 1.112^(+0.055)_(−0.061) M_⊙ and radius R^* = 1.209^(+0.047)_(−0.035) R_⊙. The planet has a radius Rp = 1.399^(+0.069)_(−0.049) RJ and mass Mp = 0.679^(+0.039)_(−0.038) MJ. The planet has an eccentricity consistent with zero and a semimajor axis a = 0.05250^(+0.00086)_(−0.00097) au. The best-fitting linear ephemeris is T_0 = 2457 066.720 45 ± 0.000 27 BJD_(TDB) and P = 4.166 2739 ± 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of T_(eq) = 1377^(+28)_(−23) K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817^(+0.068)_(−0.054) × 10^9 erg s^(−1) cm^(−2), which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies.
Monthly Notices of the Royal Astronomical Society | 2016
G. Zhou; Lucyna Kedziora-Chudczer; Jeremy Bailey; D. Bayliss; Chris Stockdale; Peter Nelson; T. G. Tan; Joseph E. Rodriguez; C. G. Tinney; Diana Dragomir; Knicole D. Colón; Avi Shporer; J. Bento; Ramotholo Sefako; K. Horne; William D. Cochran
We present multi-wavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the rst set of near-infrared light curves for the object, obtained on multiple nights over the span of one month, and recorded multiple transit events with depths varying between 20 to 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5 to 1:2 m. These observations revealed no measurable dierence in transit depths for multiple photometric pass bands, allowing us to place a 2 lower limit of 0:8 m on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be t with an optically thin debris disc with minimum particle sizes of 10 +5 3 m.