Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. J. Flowers is active.

Publication


Featured researches published by T. J. Flowers.


Australian Journal of Plant Physiology | 1995

Breeding for Salinity Resistance in Crop Plants: Where Next?

T. J. Flowers; A. R. Yeo

Soil salinity is widely reported to be a major agricultural problem, particularly in irrigated agriculture, and research on salinity in plants has produced a vast literature. However, there are only a handful of instances where cultivars have been developed which are resistant to saline soils. Reasons for the lack of success in developing salt-resistant genotypes, and for the low impact that plant physiological research has made, are explored. We conclude that soil salinity has not yet become a sufficient agricultural problem, other than on a local scale, to make salt resistance a high priority objective for plant breeders. The limited success of simple selection, where this has been practised in breeding programs, can be accounted for by the fact that research has consistently shown salt resistance is a complex character controlled by a number of genes or groups of genes and involves a number of component traits which are likely to be quantitative in nature. We also conclude that the results of physiological research have been poorly marketed by physiologists and, understandably, have failed to impress plant breeders. We anticipate that the importance of salinity as a breeding objective will increase in the future. Our assessment of reports of the degradation of irrigation systems, together with projections of the future demands of irrigated agriculture, is that enhancing the salt resistance of at least some crops will be necessary. Salinity resistance will both help provide stability of yield in subsistence agriculture and, through moderating inputs, help limit salinisation in irrigation systems with inadequate drainage. It is emphasised that plant improvement and drainage engineering should be seen as partners and not alternatives. We conclude with a personal view of one way forward for developing salt-resistant genotypes, through the pyramiding of physiological characters.


Science | 2008

Crops for a salinized world.

Jelte Rozema; T. J. Flowers

Cultivation of salt-tolerant crops can help address the threats of irreversible global salinization of fresh water and soils.


Functional Plant Biology | 2010

Evolution of halophytes: multiple origins of salt tolerance in land plants

T. J. Flowers; Hanaa K Galal; Lindell Bromham

The evolution of salt tolerance is interesting for several reasons. First, since salt-tolerant plants (halophytes) employ several different mechanisms to deal with salt, the evolution of salt tolerance represents a fascinating case study in the evolution of a complex trait. Second, the diversity of mechanisms employed by halophytes, based on processes common to all plants, sheds light on the way that a plant’s physiology can become adapted to deal with extreme conditions. Third, as the amount of salt-affected land increases around the globe, understanding the origins of the diversity of halophytes should provide a basis for the use of novel species in bioremediation and conservation. In this review we pose the question, how many times has salt tolerance evolved since the emergence of the land plants some 450–470 million years ago? We summarise the physiological mechanisms underlying salt-tolerance and provide an overview of the number and diversity of salt-tolerant terrestrial angiosperms (defined as plants that survive to complete their life cycle in at least 200 mM salt). We consider the evolution of halophytes using information from fossils and phylogenies. Finally, we discuss the potential for halophytes to contribute to agriculture and land management and ask why, when there are naturally occurring halophytes, it is proving to be difficult to breed salt-tolerant crops.


Plant Physiology | 2003

Single-Cell Measurements of the Contributions of Cytosolic Na+ and K+ to Salt Tolerance

David E. Carden; David J. Walker; T. J. Flowers; Anthony J. Miller

Ion concentrations in the roots of two barley (Hordeum vulgare) varieties that differed in NaCl tolerance were compared after exposure to NaCl. Triple-barreled H+-, K+-, and Na+-selective microelectrodes were used to measure cytosolic activities of the three ions after 5 and 8 d of NaCl stress. In both varieties of barley, it was only possible to record successfully from root cortical cells because the epidermal cells appeared to be damaged. The data show that from the 1st d of full NaCl stress, there were differences in the way in which the two varieties responded. At 5 d, the tolerant variety maintained a 10-fold lower cytosolic Na+ than the more sensitive variety, although by 8 d the two varieties were not significantly different. At this time, the more tolerant variety was better at maintaining root cytosolic K+ in the high-NaCl background than was the more sensitive variety. In contrast to earlier work on K+-starved barley (Walker et al., 1996), there was no acidification of the cytosol associated with the decreased cytosolic K+ activity during NaCl stress. These single-cell measurements of cytosolic and vacuolar ion activities allow calculation of thermodynamic gradients that can be used to reveal (or predict) the type of active transporters at both the plasma membrane and tonoplast.


Australian Journal of Experimental Agriculture | 2005

Improving salt tolerance of wheat and barley: future prospects

Timothy D. Colmer; Rana Munns; T. J. Flowers

Cropping on saline land is restricted by the low tolerance of crops to salinity and waterlogging. Prospects for improving salt tolerance in wheat and barley include the use of: (i) intra-specific variation, (ii) variation for salt tolerance in the progenitors of these cereals, (iii) wide-hybridisation with halophytic ‘wild’ relatives (an option for wheat, but not barley), and (iv) transgenic techniques. In this review, key traits contributing to salt tolerance, and sources of variation for these within the Triticeae, are identified and recommendations for use of these traits in screening for salt tolerance are summarised. The potential of the approaches to deliver substantial improvements in salt tolerance is discussed, and the importance of adverse interactions between waterlogging and salinity are emphasised. The potential to develop new crops from the diverse halophytic flora is also considered.


New Phytologist | 2008

Flooding tolerance in halophytes

Timothy D. Colmer; T. J. Flowers

Flooding is a common environmental variable with salinity. Submerged organs can suffer from O(2) deprivation and the resulting energy deficits can compromise ion transport processes essential for salinity tolerance. Tolerance of soil waterlogging in halophytes, as in glycophytes, is often associated with the production of adventitious roots containing aerenchyma, and the resultant internal O(2) supply. For some species, shallow rooting in aerobic upper soil layers appears to be the key to survival on frequently flooded soils, although little is known of the anoxia tolerance in halophytes. Halophytic species that inhabit waterlogged substrates are able to regulate their shoot ion concentrations in spite of the hypoxic (or anoxic) medium in which they are rooted, this being in stark contrast with most other plants which suffer when salinity and waterlogging occur in combination. Very few studies have addressed the consequences of submergence of the shoots by saline water; these have, however, demonstrated tolerance of temporary submergence in some halophytes.


Plant and Soil | 2001

Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance

T. J. Flowers; M. A. Hajibagheri

The tolerance of 24 genotypes of barley was assessed by estimating their survival in saline conditions either in a glasshouse or in a controlled environment cabinet. Two cultivars, sensitive Triumph and resistant Gerbel, were picked for further study, which involved sequential harvesting of plants grown in a range of salinities. After about one month in 200 mol m−3 sodium chloride, the sodium concentration in the roots and shoots of the sensitive Triumph was about 1.5 times that in the roots of resistant Gerbel. The addition of Na to the root medium reduced the potassium transport to the shoot in Triumph to a much greater extent than in Gerbel, so the K:Na ratio of Gerbel was twice that for Triumph, when averaged over all treatments and harvests. The sodium, potassium and chloride concentrations within the major subcellular compartments of the cortical cells of roots of Triumph and Gerbel were determined by X-ray microanalysis following freeze-substitution and dry-sectioning. The mean cytoplasmic sodium concentration (245 mol m−3 analysed volume) in Triumph grown in 200 mol m−3 NaCl for 15 d was almost 1.4 times greater than that in the resistant Gerbel: the potassium concentration in Gerbel showed a lower reduction than did that of Triumph. Another major difference between the two cultivars was the higher concentrations of sodium and chloride in the cell walls of Triumph than Gerbel: the sodium concentration in the cortical cell walls of the salt-sensitive cultivar was about 1.75 times that in the more salt-resistant cultivar. The exchange capacity of the cell walls of Gerbel was greater than that of Triumph. We hypothesise that ion transport to the shoot reflects cytosolic ion concentrations, with a more sensitive cultivar having a higher sodium concentration in its cytoplasm than a more resistant variety. It is noteworthy that the difference in the K:Na ratio between the shoots of Gerbel and Triumph after 15 days of exposure to 200 mol m−3 NaCl was similar to the difference in their symplastic K:Na ratios.


Annals of Botany | 2015

Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes

T. J. Flowers; Rana Munns; Timothy D. Colmer

BACKGROUND Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na(+) and Cl(-)) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na(+) and/or Cl(-) in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K(+) (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. SCOPE This review discusses the evidence for Na(+) and Cl(-) toxicity and the concept of tissue tolerance in relation to halophytes. CONCLUSIONS The data reviewed here suggest that halophytes tolerate cytoplasmic Na(+) and Cl(-) concentrations of 100-200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability.


Plant and Soil | 2010

Mechanisms of sodium uptake by roots of higher plants

Jin-Lin Zhang; T. J. Flowers; Suo-Min Wang

The negative impact of soil salinity on agricultural yields is significant. For agricultural plants, sensitivity to salinity is commonly (but not exclusively) due to the abundance of Na+ in the soil as excess Na+ is toxic to plants. We consider reducing Na+ uptake to be the key, as well as the most efficient approach, to control Na+ accumulation in crop plants and hence to improve their salt resistance. Understanding the mechanism of Na+ uptake by the roots of higher plants is crucial for manipulating salt resistance. Hence, the aim of this review is to highlight and discuss recent advances in our understanding of the mechanisms of Na+ uptake by plant roots at both physiological and molecular levels. We conclude that continued efforts to investigate the mechanisms of root Na+ uptake in higher plants are necessary, especially that of low-affinity Na+ uptake, as it is the means by which sodium enters into plants growing in saline soils.


Acta Physiologiae Plantarum | 1997

Breeding for salt tolerance in crop plants — the role of molecular biology

T. J. Flowers; Aurora Garcia; Mikiko L. Koyama; Anthony R. Yeo

Salinity in soil affects about 7 % of the land’s surface and about 5 % of cultivated land. Most importantly, about 20 % of irrigated land has suffered from secondary salinisation and 50 % of irrigation schemes are affected by salts. In many hotter, drier countries of the world salinity is a concern in their agriculture and could become a key issue. Consequently, the development of salt resistant crops is seen as an important area of research. Although there has been considerable research into the effects of salts on crop plants, there has not, unfortunately, been a commensurate release of salt tolerant cultivars of crop plants. The reason is likely to be the complex nature of the effect of salts on plants. Given the rapid increase in molecular biological techniques, a key question is whether such techniques can aid the development of salt resistance in plants.Physiological and biochemical research has shown that salt tolerance depends on a range of adaptations embracing many aspects of a plant’s physiology: one of these the compartmentation of ions. Introducing genes for compatible solutes, a key part of ion compartmentation, in salt-sensitive species is, conceptually, a simple way of enhancing tolerance. However, analysis of the few data available suggests the consequences of transformation are not straightforward. This is not unexpected for a multigenic trait where the hierarchy of various aspects of tolerance may differ between and within species. The experimental evaluation of the response of transgenic plants to stress does not always match, in quality, the molecular biology.We have advocated the use of physiological traits in breeding programmes as a process that can be undertaken at the present while more knowledge of the genetic basis of salt tolerance is obtained. The use of molecular biological techniques might aid plant breeders through the development of marker aided selection.

Collaboration


Dive into the T. J. Flowers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy D. Colmer

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rana Munns

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge