T. J. Sedillo
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. J. Sedillo.
Physics of Plasmas | 2009
H. W. Herrmann; James R. Langenbrunner; J. M. Mack; J.H. Cooley; D. C. Wilson; S. C. Evans; T. J. Sedillo; G. A. Kyrala; S. E. Caldwell; C. S. Young; A. Nobile; Joseph R. Wermer; Stephen N. Paglieri; A. McEvoy; Y. Kim; S. H. Batha; C. J. Horsfield; D.W. Drew; Warren Garbett; M. S. Rubery; V. Yu. Glebov; S. Roberts; J. A. Frenje
Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the “factor of 2” degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf....
Journal of Physics: Conference Series | 2010
H. W. Herrmann; C. S. Young; J. M. Mack; Y. Kim; A. McEvoy; S. C. Evans; T. J. Sedillo; S. H. Batha; M Schmitt; D. C. Wilson; J R Langenbrunner; Robert M. Malone; Morris I. Kaufman; Brian C. Cox; B. C. Frogget; E K Miller; Z A Ali; T. W. Tunnell; W. Stoeffl; C. J. Horsfield; M. S. Rubery
Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013–1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016–1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the expected burn widths of 10–20 ps associated with ignition. Multiple channels at each phase will allow for increased redundancy, reliability, accuracy and flexibility. In addition, inherent energy thresholding capability combined with this multiplicity will allow exploration of interesting gamma-ray physics well beyond the ignition campaign.
Review of Scientific Instruments | 2006
J. M. Mack; S. E. Caldwell; S. C. Evans; T. J. Sedillo; D. C. Wilson; C. S. Young; C. J. Horsfield; R. L. Griffith; R. A. Lerche
A diagnostic is being designed for the National Ignition Facility, using fusion gamma rays to measure highly time-resolved bang times and deuterium-tritium (d-t) interaction rates for imploding inertial fusion capsules. As a complement to neutron-based methods, gas Cherenkov detectors were chosen for this purpose because of proven ultrahigh bandwidth, thresholding versatility, and minimal time-of-flight dispersion. Gas Cherenkov detector prototypes, involving streak cameras and fast photomultiplier, microchannel plate detectors, are being tested using d-t implosions at the Omega Laser Facility. The possibility of simultaneous streak camera and photomultiplier, microchannel plate recordings of a source in one gas Cherenkov detector instrument is advantageous for reasons of independent measurement and extended reaction-history coverage. A multiplexed gas Cherenkov detector system was demonstrated successfully using electron pulses produced by the Idaho State University linear electron accelerator. A reactio...
Physics of Plasmas | 2012
Y. Kim; J. M. Mack; H. W. Herrmann; Cliff Young; Gerry Hale; S. E. Caldwell; Nelson M. Hoffman; Steve Evans; T. J. Sedillo; A. McEvoy; James R. Langenbrunner; H. H. Hsu; M. A. Huff; S. H. Batha; C. J. Horsfield; M. S. Rubery; Warren Garbett; W. Stoeffl; E. Grafil; Lee Allen Bernstein; J. A. Church; D. B. Sayre; M. Rosenberg; C. Waugh; H. G. Rinderknecht; M. Gatu Johnson; A. Zylstra; J. A. Frenje; D. T. Casey; R. D. Petrasso
A new deuterium-tritium (D-T) fusion gamma-to-neutron branching ratio [3H(d,γ)5He/3H(d,n)4He] value of (4.2 ± 2.0) × 10−5 was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement, conducted at the OMEGA laser facility located at the University of Rochester, was made for the first time using inertial confinement fusion (ICF) plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov γ-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values, which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICF D-T γ-ray and neutron ...
Review of Scientific Instruments | 2013
M. S. Rubery; C. J. Horsfield; Hartmut Herrmann; Y. Kim; J. M. Mack; C. S. Young; S. C. Evans; T. J. Sedillo; A. McEvoy; S. E. Caldwell; E. Grafil; W. Stoeffl; J. Milnes
The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear γ emissions from the implosion. Of primary interest are γ bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity γ Source (HIγS) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.
Physics of Plasmas | 2013
Nelson M. Hoffman; H. W. Herrmann; Y. Kim; H. H. Hsu; C. J. Horsfield; M. S. Rubery; E.K. Miller; E. Grafil; W. Stoeffl; J. A. Church; Cliff Young; J. M. Mack; D. C. Wilson; James R. Langenbrunner; Steve Evans; T. J. Sedillo; V. Yu. Glebov; T. Duffy
We report the first gamma-ray-based measurements of the areal density of ablators in inertial-confinement-fusion capsule implosions. The measurements, made at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], used observations of gamma rays arising from inelastic scattering of 14.1-MeV deuterium-tritium (DT) neutrons on 12C nuclei in the compressed plastic ablators. The emission of 12C(n,n′γ) gamma rays from the capsules is detected using the Gamma Reaction History instrument [H. W. Herrmann et al., J. Phys.: Conf. Ser. 244, 032047 (2010)] operating at OMEGA. From the ratio of a capsules 12C(n,n′γ) emission to the emission from the same processes in an in situ reference graphite “puck” of known mass and geometry [N. M. Hoffman et al., in IFSA 2011 proceedings (submitted)], we determine the time-averaged areal density of 12C in the capsules compressed ablator. Measured values of total ablator areal density for thirteen imploded capsules, in the range 23 ± 10 to 58 ± 14 mg/cm2, are comp...
Review of Scientific Instruments | 2010
A. McEvoy; H. W. Herrmann; C. J. Horsfield; C. S. Young; E. K. Miller; J. M. Mack; Y. Kim; W. Stoeffl; M. S. Rubery; S. C. Evans; T. J. Sedillo; Zaheer Ali
Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.
Review of Scientific Instruments | 2006
C. J. Horsfield; S. E. Caldwell; Cindy R. Christensen; S. C. Evans; J. M. Mack; T. J. Sedillo; C. S. Young; V. Yu. Glebov
In a laser driven inertial-confinement fusion experiment, bang time is defined as the time between the laser light impinging the target and the peak of the fusion reactions. Bang time is often used to compare computed predictions to experiment. Large laser facilities, such as NIF and LMJ, which are currently under construction, will produce yields far in excess of any previous inertial-confinement fusion experiment. One of the implications of such high yields is that fusion γ rays, which have branching ratios four orders of magnitude less than that of fusion neutrons, may be used to diagnose bang time. This article describes the first of such γ-ray bang-time measurement made using the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The diagnostic used for this was a gas Cherenkov detector. The experimental setup, data and error analyses, and suggested improvements are presented.
Journal of Physics: Conference Series | 2010
Y. Kim; H. W. Herrmann; S. C. Evans; T. J. Sedillo; J R Langenbrunner; C. S. Young; J. M. Mack; A. McEvoy; C. J. Horsfield; M. S. Rubery; Z Ali; W. Stoeffl
A secondary gamma experiment was carried out using a Gas Cherenkov Detector (GCD) at the OMEGA laser facility. The primary experimental objective was to simulate neutron-induced secondary gamma production (n-γ) from a NIF implosion capsule, hohlraum, and thermo-mechanical package. The high-band width of the GCD enabled us to detect time delayed and Doppler broadened n-γ signals from five different puck materials (Si, SiO2, Al, Al2O3, Cu) placed near target chamber center. These measurements were used for MCNP & ITS ACCEPT code validation purposes. By a simple change of the GCD CO2 gas pressure the system can effectively eliminate signals induced by n-γ reactions and thereby allow quality measurements of DT fusion γ-rays that are produced at NIF (National Ignition Facility).
Journal of Physics: Conference Series | 2008
H. W. Herrmann; S. E. Caldwell; D. W. Drew; S. C. Evans; Vladimir Yu. Glebov; C. J. Horsfield; J. M. Mack; G S Macrum; E K Miller; P.G. Sanchez; T. J. Sedillo; C. Stoeckl; D. C. Wilson; C. S. Young
The time of peak fusion reactivity with respect to the impingement of laser light on an Inertial Confinement Fusion (ICF) capsule is known as Bang Time (BT). For deuterium-tritium fueling, fusion reactivity and BT can be measured using either fusion neutrons or fusion gammas. Initial gamma bang time (GBT) measurements on Omega using a Gas Cherenkov Detector (GCD) have been previously reported [1]. Recent improvements have significantly enhanced the ability to measure GBT precisely. By relating the peak of the GCD gamma signal to laser timing fiducials, and cross calibrating the resulting raw bang time to the neutron bang time obtained using the absolutely calibrated Neutron Temporal Diagnostic (NTD), we demonstrate a precision of better than 25 ps on Omega. Bang time, along with other aspects of reaction history (RH), is an essential component of diagnosing failed attempts at ICF ignition. For the NIF, gammas are preferred over neutrons for this application due to the unacceptably large neutron temporal spreading resulting from detector standoff limitations on the NIF. The NIF System Design Requirement specifies a gamma bang time accuracy of better than 50 ps.