Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Karthick.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013
V. Balachandran; A. Nataraj; T. Karthick
FT-Raman and FT-IR spectra for 2-hydroxy-p-toluic acid molecule had been recorded in the regions 3500-100 cm(-1) and 4000-400 cm(-1), respectively. Vibrational frequencies have been calculated in optimum state by employing density functional theory (DFT) and Hartree Fock (HF) methods with 6-311++G(d,p) basis set in monomeric form. SQM force fields have also been used to calculate potential energy distributions in order to make conspicuous vibrational assignments. Optimized geometries of the molecule had been interpreted and compared. The electric dipole moment and first hyperpolarizability values of the investigated molecule were computed using ab initio and DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond analysis. The results show that charge in electron density (ED) in the σ(*) antibonding orbitals and E((2)) energies confirms the occurrence of ICT within the molecule.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013
T. Karthick; V. Balachandran; S. Perumal; A. Nataraj
In this work, the vibrational characteristics of 2-chloro-5-(trifluoromethyl) aniline have been investigated and both the experimental and theoretical vibrational data indicate the presence of various functional groups within the title molecule. The influence of chlorine substituent on the vibrational wavenumbers of a molecule in comparison with aniline and trifluoromethyl aniline has been discussed in detail. The density functional theoretical (DFT) computations were performed at the B3LYP/6-31++G(3df,3pd)/6-31G(3df,3pd) levels to derive the optimized geometry, vibrational wavenumbers with IR and Raman intensities. Furthermore, the molecular orbital calculations such as; natural bond orbitals (NBOs) and HOMO-LUMO energy gap and mapped molecular electrostatic potential (MEP) surfaces were also performed with the same level of DFT. The temperature dependence thermodynamic parameters of a molecule were illustrated on the basis of their correlation graphs. The detailed interpretation of the vibrational spectra has been carried out with the aid of potential energy distribution (PED) results obtained from MOLVIB program. The delocalization of electron density in various constituents of the molecule has been discussed with the aid of NBO and HOMO-LUMO energy gap analysis.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012
V. Balachandran; T. Karthick; S. Perumal; A. Nataraj
The potential energy surface scan for the selected dihedral angle of 6-nitro-m-toluic acid (NTA) has been performed to identify stable conformer. The optimized structure parameters and vibrational wavenumbers of stable conformer have been predicted by density functional B3LYP method with 6-311++G(d,p) basis set. The formation of dimer species through carboxylic acid group of the title molecule has also been discussed. The theoretical dimer geometries have been compared with that of monomer and the variations of bond lengths and bond angles upon dimerization were also discussed. Natural bond orbital (NBO) analysis has been performed on both monomer and dimer geometries. The significant changes in occupancies and the energies of bonding and anti-bonding orbitals upon dimerization have been explained in detail. The predicted frontier molecular orbital energies at B3LYP/6-311++G(d,p) method set show that charge transfer occurs within the molecule. The nucleophilic and electrophilic sites obtained from the molecular electrostatic potential (MEP) surface were compared with their derived fitting point charges. The vibrational wavenumbers of NTA affected profusely by the nitro group substitution in comparison to the toluic acid have been interpreted in this work.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015
T. Karthick; V. Balachandran; S. Perumal
Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm(-1) has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013
T. Karthick; V. Balachandran; S. Perumal; A. Lakshmi
In this work, the spectroscopic characterization of 2,4,6-tris(dimethylaminomethyl) phenol; a novel promoter factor for DNA has been studied primarily. The FT-IR (4000-400 cm(-1)) and FT-Raman (3500-100 cm(-1)) spectra have been recorded on the solid phase of the title molecule. The spectroscopic signature of the title molecule has been found by comparing experimental FT-IR, FT-Raman spectra with the theoretical IR and Raman spectra of the stable isomer geometry at density functional theory (DFT) method with 6-311++G(d,p) basis set. Further, the vibrational assignments were performed on the basis of potential energy distribution (PED). The natural atomic orbital and natural population analysis performed in this study ensures us to know about the delocalization of charge and electron density of atoms within the molecule. Analysis of natural bond orbitals (NBOs) and HOMO-LUMO energy gap of the compound provides information about its chemical stability and intramolecular charge transfer properties. In addition, the reacting electrophilic and nucleophilic sites of the molecule were predicted with the help of molecular electrostatic potential (MEP) surface analysis. Moreover, the intensity of molecular vibrations at different temperatures were examined by applying thermo-chemical analysis. To investigate the solvent effect, the polarizable continuum model was used and the allowed transitions between various HOMO and LUMO levels were found.
Journal of Molecular Structure | 2012
A. Nataraj; V. Balachandran; T. Karthick; M. Karabacak; Ahmet Atac
Journal of Molecular Structure | 2013
A. Nataraj; V. Balachandran; T. Karthick
Journal of Molecular Structure | 2011
T. Karthick; V. Balachandran; S. Perumal; A. Nataraj
Journal of Molecular Structure | 2011
T. Karthick; V. Balachandran; S. Perumal; A. Nataraj
Journal of Molecular Structure | 2011
A. Nataraj; V. Balachandran; T. Karthick