Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Kozik is active.

Publication


Featured researches published by T. Kozik.


Nuclear Physics | 2005

Quark Gluon Plasma and Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment.

I. Arsene; Ian Gardner Bearden; D. R. Beavis; C. Besliu; B. Budick; H. Bøggild; C. Chasman; Christian Holm Christensen; P. Christiansen; J. Cibor; R. Debbe; E. Enger; Jens Joergen Gaardhoje; M. Germinario; Ole Hansen; A. Holm; A.K. Holme; K. Hagel; H. Ito; E. Jakobsen; A. Jipa; F. Jundt; J.I. Jordre; C.E. Jørgensen; R. Karabowicz; E.J. Kim; T. Kozik; T.M. Larsen; J. Lee; Y.K. Lee

We review the main results obtained by the BRAHMS collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus of this paper is to discuss to what extent the results collected so far by BRAHMS, and by the other three experiments at RHIC, can be taken as evidence for the formation of a state of deconfined partonic matter, the so called quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor state to the QGP, i.e. the proposed Color Glass Condensate.


Physical Review Letters | 2003

Transverse momentum spectra in Au+Au and d+Au collisions at s**(1/2) = 200-GeV and the pseudorapidity dependence of high p(T) suppression

I. Arsene; Ian Gardner Bearden; D. R. Beavis; C. Besliu; B. Budick; H. Bøggild; C. Chasman; Christian Holm Christensen; P. Christiansen; J. Cibor; R. Debbe; E. Enger; Jens Joergen Gaardhoje; M. Germinario; K. Hagel; Ole Hansen; A. Holm; H. Ito; A. Jipa; F. Jundt; J. I. Jørdre; C. E. Jørgensen; Radoslaw Karabowicz; Kim Ej; T. Kozik; T. M. Larsen; Junghoon Lee; Y.K. Lee; S. Lindal; G. Lystad

We present spectra of charged hadrons from Au+Au and d+Au collisions at sqrt[s(NN)]=200 GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from p+(-)p collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at eta=0 and eta=2.2 evidence a strong suppression in the high p(T) region (>2 GeV/c). In contrast, the d+Au nuclear modification factor (at eta=0) exhibits an enhancement of the high p(T) yields. These measurements indicate a high energy loss of the high p(T) particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.


Physical Review Letters | 2005

Charged meson rapidity distributions in central Au+Au collisions at s(NN)**(1/2) = 200-GeV

Ian Gardner Bearden; D. R. Beavis; C. Besliu; B. Budick; H. Bøggild; C. Chasman; Christian Holm Christensen; P. Christiansen; J. Cibor; R. Debbe; E. Enger; J. J. Gaardhøje; M. Germinario; K. Hagel; Ole Hansen; A. Holm; A.K. Holme; H. Ito; A. Jipa; F. Jundt; J.I. Jordre; C.E. Jorgensen; R. Karabowicz; E. Kim; T. Kozik; T.M. Larsen; J. H. Lee; Y.K. Lee; G. Løvhøiden; Z. Majka

We have measured rapidity densities dN/dy of pi+/- and K+/- over a broad rapidity range (-0.1 < y < 3.5) for central Au + Au collisions at square root(sNN) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+), and 242 +/- 4 +/- 19 (K-). The systematics of the strange to nonstrange meson ratios are found to track the variation of the baryochemical potential with rapidity and energy. Landau-Carruthers hydrodynamics is found to describe the bulk transport of the pions in the longitudinal direction.


Physical Review Letters | 2004

Nuclear Stopping inAu+AuCollisions atsNN=200GeV

I. G. Bearden; D. R. Beavis; C. Besliu; B. Budick; H. Bøggild; C. Chasman; C. H. Christensen; P. Christiansen; J. Cibor; R. Debbe; E. Enger; J. J. Gaardhøje; M. Germinario; K. Hagel; Ole Hansen; A. Holm; A.K. Holme; H. Ito; A. Jipa; F. Jundt; J.I. Jordre; C.E. Jorgensen; R. Karabowicz; E. Kim; T. Kozik; T.M. Larsen; J. H. Lee; Y.K. Lee; G. Løvhøiden; Z. Majka

Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0<y<3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

The BRAHMS experiment at RHIC.

M. Adamczyk; L Antvorskov; K Ashktorab; K. Asselta; E. Baker; Ian Gardner Bearden; D. R. Beavis; C. Besliu; Y. Blyakhman; J. Brzychczyk; B. Budick; H. Bøggild; C. Chasman; Christian Holm Christensen; P. Christiansen; J. Cibor; R. Debbe; H. Diaz; L Dutka; J Engelhardt; Jens Joergen Gaardhoje; K. Grotowski; K. Hagel; J. Hammond; J.C. Hansen; Ole Hansen; A. Holm; A.K. Holme; H. Ito; E. Jakobsen

The BRAHMS experiment at RHIC was conceived to pursue the understanding of nuclear matter under extreme conditions by detailed measurements of charged hadrons over the widest possible range of rapidity and transverse momentum. The experiment consists of two spectrometers with complementary charged hadron detection capabilities as well as a series of global detectors for event characterization. A series of tracking detectors, time-of-flight arms and Cherenkov detectors enables momentum determination and particle identification over a wide range of rapidity and transverse momentum. Technical details and performance results are presented for the various detector subsystems. The performance of the entire system working together is shown to meet the goals of the experiment.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015

A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals

P. Moskal; Natalia Zoń; T. Bednarski; P. Białas; E. Czerwiński; A. Gajos; D. Kamińska; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; W. Krzemien; E. Kubicz; Sz. Niedźwiecki; M. Palka; L. Raczyński; Z. Rudy; Oleksandr Rundel; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; W. Wiślicki; M. Zieliński

A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multidimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22 Na


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2014

Test of a single module of the J-PET scanner based on plastic scintillators

P. Moskal; Sz. Niedźwiecki; T. Bednarski; E. Czerwiński; Ł. Kapłon; E. Kubicz; Ines Moskal; M. Pawlik-Niedźwiecka; Neha Sharma; M. Silarski; M. Zieliński; Natalia Zoń; P. Białas; A. Gajos; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; P. Kowalski; T. Kozik; W. Krzemien; Marcin Molenda; M. Palka; L. Raczyński; Z. Rudy; P. Salabura; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; W. Wiślicki

A Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this paper we report on tests of a single detection module built out from the BC-420 plastic scintillator strip (with dimensions of 5 � 19 � 300 mm 3 ) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68 Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50 ps intervals. The time resolution of the prototype module was established to be better than 80 ps (σ) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93 cm (σ) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to σðEÞ=E � 0:044= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi EðMeVÞ p


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2014

Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography

L. Raczyński; P. Moskal; P. Kowalski; W. Wiślicki; T. Bednarski; P. Białas; E. Czerwiński; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; T. Kozik; W. Krzemien; E. Kubicz; Marcin Molenda; Ines Moskal; Sz. Niedźwiecki; M. Palka; M. Pawlik-Niedźwiecka; Z. Rudy; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; M. Zieliński; Natalia Zoń

Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET scanner from plastic scintillators which would allow for single bed imaging of the whole human body. This paper describes a novel method of hit-position reconstruction based on sampled signals and an example of an application of the method for a single module with a 30 cm long plastic strip, read out on both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an annihilation gamma quanta of energy 511 keV. The statistical test for a multivariate normal (MVN) distribution of measured vectors at a given position is developed, and it is shown that signals sampled at four thresholds in a voltage domain are approximately normally distributed variables. With the presented method of a vector analysis made out of waveform samples acquired with four thresholds, we obtain a spatial resolution of about 1 cm and a timing resolution of about 80 ps ( σ).


Physical Review C | 2005

Centrality dependent particle production at y=0 and y ~ 1 in Au + Au collisions at s(NN)**(1/2) = 200-GeV

Ionut Cristian Arsene; O. Ristea; M. Germinario; R. Lystad; R. Wada; R. Karabowicz; Z. Majka; G. Løvhøiden; C. Besliu; B. H. Samset; C. Ristea; Y.K. Lee; D. Röhrich; F. Videbaek; P. Staszel; Borge Svane Nielsen; K. Hagel; Christian Holm Christensen; D. R. Beavis; J. Cibor; D. Sandberg; C.E. Jorgensen; B. Budick; Michael Murray; I.S. Zgura; M. Mikelsen; R. Płaneta; E. Enger; D. Ouerdane; T. S. Tveter

Particle production of identified charged hadrons,


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015

Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument

L. Raczyński; P. Moskal; P. Kowalski; W. Wiślicki; T. Bednarski; P. Białas; E. Czerwiński; A. Gajos; Ł. Kapłon; Andrzej Kochanowski; G. Korcyl; Jakub Kowal; T. Kozik; W. Krzemien; E. Kubicz; Sz. Niedźwiecki; M. Palka; Z. Rudy; Oleksandr Rundel; P. Salabura; Neha Sharma; M. Silarski; A. Słomski; J. Smyrski; A. Strzelecki; A. Wieczorek; M. Zieliński; Natalia Zoń

\pi^{\pm}

Collaboration


Dive into the T. Kozik's collaboration.

Top Co-Authors

Avatar

Z. Rudy

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

P. Kowalski

Maria Curie-Skłodowska University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Korcyl

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

L. Raczyński

Maria Curie-Skłodowska University

View shared research outputs
Top Co-Authors

Avatar

M. Silarski

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

M. Palka

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

P. Białas

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

A. Gajos

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

E. Kubicz

Jagiellonian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge