Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. M. Shaun Johnston is active.

Publication


Featured researches published by T. M. Shaun Johnston.


Nature | 2015

The formation and fate of internal waves in the South China Sea

Matthew H. Alford; Thomas Peacock; Jennifer A. MacKinnon; Jonathan D. Nash; Maarten C. Buijsman; Luca R. Centuroni; Shenn-Yu Chao; Ming-Huei Chang; David M. Farmer; Oliver B. Fringer; Ke-Hsien Fu; Patrick C. Gallacher; Hans C. Graber; Karl R. Helfrich; Steven M. Jachec; Christopher R. Jackson; Jody M. Klymak; Dong S. Ko; Sen Jan; T. M. Shaun Johnston; Sonya Legg; I-Huan Lee; Ren-Chieh Lien; Matthieu J. Mercier; James N. Moum; Ruth Musgrave; Jae-Hun Park; Andy Pickering; Robert Pinkel; Luc Rainville

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans’ most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.


Geophysical Research Letters | 2001

The generation of internal tides at the Hawaiian Ridge

Mark A. Merrifield; Peter E. Holloway; T. M. Shaun Johnston

Previous analyses of altimeter and acoustic data indicate that the Hawaiian Ridge is a significant generation site for semidiurnal (M2 period) internal waves owing to tidal flow over topography. Such waves likely play an important role connecting the dissipation of tidal energy to ocean mixing. Here a primitive equation numerical model with realistic stratification, bathymetry, and tidal forcing is used to simulate the generation of these waves in a manner consistent with altimeter sea surface observations. The highest amplitude waves originate at three generation sites located at both the island and seamount portions of the chain. These sites have in common both enhanced flows across ridge-shaped topography and maxima in model calculated body force which couples barotropic and baroclinic motions. The model vertical structure suggests the presence of multiple dynamical modes within 100 km of the ridge and not just the lowest modes that have been detected at the sea surface.


Journal of Physical Oceanography | 2010

Interference Pattern and Propagation of the M2 Internal Tide South of the Hawaiian Ridge

Luc Rainville; T. M. Shaun Johnston; Glenn S. Carter; Mark A. Merrifield; Robert Pinkel; Peter F. Worcester; Brian D. Dushaw

Abstract Most of the M2 internal tide energy generated at the Hawaiian Ridge radiates away in modes 1 and 2, but direct observation of these propagating waves is complicated by the complexity of the bathymetry at the generation region and by the presence of interference patterns. Observations from satellite altimetry, a tomographic array, and the R/P FLIP taken during the Farfield Program of the Hawaiian Ocean Mixing Experiment (HOME) are found to be in good agreement with the output of a high-resolution primitive equation model, simulating the generation and propagation of internal tides. The model shows that different modes are generated with different amplitudes along complex topography. Multiple sources produce internal tides that sum constructively and destructively as they propagate. The major generation sites can be identified using a simplified 2D idealized knife-edge ridge model. Four line sources located on the Hawaiian Ridge reproduce the interference pattern of sea surface height and energy fl...


Journal of Physical Oceanography | 2009

Observations of the Transition Layer

T. M. Shaun Johnston; Daniel L. Rudnick

Abstract The transition layer is the poorly understood interface between the stratified, weakly turbulent interior and the strongly turbulent surface mixed layer. The transition layer displays elevated thermohaline variance compared to the interior and maxima in current shear, vertical stratification, and potential vorticity. A database of 91 916 km or 25 426 vertical profiles of temperature and salinity from SeaSoar, a towed vehicle, is used to define the transition layer thickness. Acoustic Doppler current measurements are also used, when available. Statistics of the transition layer thickness are compared for 232 straight SeaSoar sections, which range in length from 65 to 1129 km with typical horizontal resolution of ∼4 km and vertical resolution of 8 m. Transition layer thicknesses are calculated in three groups from 1) vertical displacements of the mixed layer base and of interior isopycnals into the mixed layer; 2) the depths below the mixed layer depth of peaks in shear, stratification, and potenti...


Journal of Physical Oceanography | 2015

Standing internal tides in the Tasman sea observed by gliders

T. M. Shaun Johnston; Daniel L. Rudnick; Samuel M. Kelly

AbstractLow-mode internal tides are generated at tall submarine ridges, propagate across the open ocean with little attenuation, and reach distant continental slopes. A semidiurnal internal tide beam, identified in previous altimetric observations and modeling, emanates from the Macquarie Ridge, crosses the Tasman Sea, and impinges on the Tasmanian slope. Spatial surveys covering within 150 km of the slope by two autonomous underwater gliders with maximum profile depths of 500 and 1000 m show the steepest slope near 43°S reflects almost all of the incident energy flux to form a standing wave. Starting from the slope and moving offshore by one wavelength (~150 km), potential energy density displays an antinode–node–antinode–node structure, while kinetic energy density shows the opposite.Mission-mean mode-1 incident and reflected flux magnitudes are distinguished by treating each glider’s survey as an internal wave antenna for measuring amplitude, wavelength, and direction. Incident fluxes are 1.4 and 2.3 k...


Journal of Physical Oceanography | 2000

Interannual Geostrophic Current Anomalies in the Near-Equatorial Western Pacific

T. M. Shaun Johnston; Mark A. Merrifield

Abstract A network of island tide gauges is used to estimate interannual geostrophic current anomalies (GCAs) in the western Pacific from 1975 to 1997. The focus of this study is the zonal component of the current averaged between 160°E and 180° and 2° to 7° north and south of the equator in the mean flow regions associated with the North Equatorial Countercurrent (NECC) and the South Equatorial Current (SEC), respectively. The tide gauge GCA estimates agree closely with similarly derived currents from TOPEX/Poseidon sea level anomalies. The GCAs in the western Pacific relate to a basin-scale adjustment associated with the El Nino–Southern Oscillation, characterized here using empirical orthogonal functions of tide gauge and supporting sea surface temperature and heat storage data. The dominant EOF mode describes the mature phase of ENSO events and correlates (0.8) with the GCA south of the equator. The second mode describes transitions to and from ENSO events and correlates (0.9) with the GCA north of th...


Nature | 2015

Corrigendum: The formation and fate of internal waves in the South China Sea

Matthew H. Alford; Thomas Peacock; Jennifer A. MacKinnon; Jonathan D. Nash; Maarten C. Buijsman; Luca Centurioni; Shenn-Yu Chao; Ming-Huei Chang; David M. Farmer; Oliver B. Fringer; Ke-Hsien Fu; Patrick C. Gallacher; Hans C. Graber; Karl R. Helfrich; Steven M. Jachec; Christopher R. Jackson; Jody M. Klymak; Dong S. Ko; Sen Jan; T. M. Shaun Johnston; Sonya Legg; I-Huan Lee; Ren-Chieh Lien; Matthieu Mercier; James N. Moum; Ruth Musgrave; Jae-Hun Park; Andrew Pickering; Robert Pinkel; Luc Rainville

This corrects the article DOI: 10.1038/nature14399


Journal of Geophysical Research | 2003

Internal tide scattering at seamounts, ridges, and islands

T. M. Shaun Johnston; Mark A. Merrifield


Journal of Geophysical Research | 2003

Internal tide scattering at the Line Islands Ridge

T. M. Shaun Johnston; Mark A. Merrifield; Peter E. Holloway


Journal of Geophysical Research | 2011

Internal tidal beams and mixing near Monterey Bay

T. M. Shaun Johnston; Daniel L. Rudnick; Glenn S. Carter; Robert E. Todd; Sylvia T. Cole

Collaboration


Dive into the T. M. Shaun Johnston's collaboration.

Top Co-Authors

Avatar

Daniel L. Rudnick

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Mark A. Merrifield

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Rainville

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Robert Pinkel

University of California

View shared research outputs
Top Co-Authors

Avatar

Thomas Peacock

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andy Pickering

University of Washington

View shared research outputs
Top Co-Authors

Avatar

David M. Farmer

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Dong S. Ko

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge