Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenn S. Carter is active.

Publication


Featured researches published by Glenn S. Carter.


Journal of Physical Oceanography | 2002

Internal Tides in Monterey Submarine Canyon

Rob A. Hall; Glenn S. Carter

Abstract The M2 internal tide in Monterey Submarine Canyon is simulated using a modified version of the Princeton Ocean Model. Most of the internal tide energy entering the canyon is generated to the south, on Sur Slope and at the head of Carmel Canyon. The internal tide is topographically steered around the large canyon meanders. Depth-integrated baroclinic energy fluxes are up canyon and largest near the canyon axis, up to 1.5 kW m−1 at the mouth of the upper canyon and increasing to over 4 kW m−1 around Monterey and San Gregorio Meanders. The up-canyon energy flux is bottom intensified, suggesting that topographic focusing occurs. Net along-canyon energy flux decreases almost monotonically from 9 MW at the canyon mouth to 1 MW at Gooseneck Meander, implying that high levels of internal tide dissipation occur. The depth-integrated energy flux across the 200-m isobath is order 10 W m−1 along the majority of the canyon rim but increases by over an order of magnitude near the canyon head, where internal ti...


Journal of Physical Oceanography | 2014

Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate

Amy F. Waterhouse; Jennifer A. MacKinnon; Jonathan D. Nash; Matthew H. Alford; Eric Kunze; Harper L. Simmons; Kurt L. Polzin; Louis C. St. Laurent; Oliver M. T. Sun; Robert Pinkel; Lynne D. Talley; Caitlin B. Whalen; Tycho N. Huussen; Glenn S. Carter; Ilker Fer; Stephanie Waterman; Alberto C. Naveira Garabato; Thomas B. Sanford; Craig M. Lee

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixingobtainedfrom(i)Thorpe-scaleoverturnsfrommooredprofilers,afinescaleparameterizationappliedto (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strainfromfull-depthloweredacousticDoppler currentprofilers (LADCP)andCTDprofiles. Verticalprofiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10 24 )m 2 s 21 and above 1000-m depth is O(10 25 )m 2 s 21 . The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variabilityin theratiobetweenlocal internalwavegeneration and local dissipation.Insomeregions,the depthintegrateddissipationrateiscomparabletotheestimatedpowerinputintothelocalinternalwavefield.Inafew cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However,atmostlocationsthetotalpowerlostthroughturbulentdissipationislessthantheinputintothelocal internal wave field. This suggests dissipation elsewhere, such as continental margins.


Journal of Physical Oceanography | 2008

Energetics of M2 Barotropic-to-Baroclinic Tidal Conversion at the Hawaiian Islands

Glenn S. Carter; Mark A. Merrifield; Janet M. Becker; K. Katsumata; Michael C. Gregg; Douglas S. Luther; Murray D. Levine; Timothy J. Boyd; Y. L. Firing

Abstract A high-resolution primitive equation model simulation is used to form an energy budget for the principal semidiurnal tide (M2) over a region of the Hawaiian Ridge from Niihau to Maui. This region includes the Kaena Ridge, one of the three main internal tide generation sites along the Hawaiian Ridge and the main study site of the Hawaii Ocean Mixing Experiment. The 0.01°–horizontal resolution simulation has a high level of skill when compared to satellite and in situ sea level observations, moored ADCP currents, and notably reasonable agreement with microstructure data. Barotropic and baroclinic energy equations are derived from the model’s sigma coordinate governing equations and are evaluated from the model simulation to form an energy budget. The M2 barotropic tide loses 2.7 GW of energy over the study region. Of this, 163 MW (6%) is dissipated by bottom friction and 2.3 GW (85%) is converted into internal tides. Internal tide generation primarily occurs along the flanks of the Kaena Ridge and ...


Journal of Physical Oceanography | 2002

Intense, Variable Mixing near the Head of Monterey Submarine Canyon

Glenn S. Carter; Michael C. Gregg

Abstract A microstructure survey near the head of Monterey Submarine Canyon, the first in a canyon, confirmed earlier inferences that coastal submarine canyons are sites of intense mixing. The data collected during two weeks in August 1997 showed turbulent kinetic energy dissipation and diapycnal diffusivity up to 103 times higher than in the open ocean. Dissipation and diapycnal diffusivity within 10 km of the canyon head were among the highest observed anywhere (e = 1.1 × 10−6 W kg−1; Kρ = 1.0 × 10−2 m2 s−1). Mixing occurred mainly in an on-axis stratified turbulent layer, with thickness and intensity increasing from neap to spring tide. Strain spectra showed a gentler than k−1z rolloff, suggesting that critical reflection and scattering may push energy into high wavenumbers. Dissipation dependence on shear appears to be much weaker in the canyon than in the open ocean, with indications that the dependence maybe as low as e ∝ S. Coastal canyons may account for a small but significant fraction of the int...


Journal of Physical Oceanography | 2006

Persistent Near-Diurnal Internal Waves Observed above a Site of M2 Barotropic-to-Baroclinic Conversion

Glenn S. Carter; Michael C. Gregg

Abstract Near-diurnal internal waves were observed in velocity and shear measurements from a shipboard survey along a 35-km section of the Kaena Ridge, northwest of Oahu. Individual waves with upward phase propagation could be traced for almost 4 days even though the ship transited approximately 20 km. Depth–time maps of shear were dominated by near-diurnal waves, despite the fact that Kaena Ridge is a site of considerable M2 barotropic-to-baroclinic conversion. Guided by recent numerical and observational studies, it was found that a frequency of ½M2 (i.e., 24.84-h period) was consistent with these waves. Nonlinear processes are able to transfer energy within the internal wave spectrum. Bicoherence analysis, which can distinguish between nonlinearly coupled waves and waves that have been independently excited, suggested that the ½M2 waves were nonlinearly coupled with the dominant M2 internal tide only between 525- and 595-m depth. This narrow depth range corresponded to an observed M2 characteristic ema...


Journal of Physical Oceanography | 2010

Interference Pattern and Propagation of the M2 Internal Tide South of the Hawaiian Ridge

Luc Rainville; T. M. Shaun Johnston; Glenn S. Carter; Mark A. Merrifield; Robert Pinkel; Peter F. Worcester; Brian D. Dushaw

Abstract Most of the M2 internal tide energy generated at the Hawaiian Ridge radiates away in modes 1 and 2, but direct observation of these propagating waves is complicated by the complexity of the bathymetry at the generation region and by the presence of interference patterns. Observations from satellite altimetry, a tomographic array, and the R/P FLIP taken during the Farfield Program of the Hawaiian Ocean Mixing Experiment (HOME) are found to be in good agreement with the output of a high-resolution primitive equation model, simulating the generation and propagation of internal tides. The model shows that different modes are generated with different amplitudes along complex topography. Multiple sources produce internal tides that sum constructively and destructively as they propagate. The major generation sites can be identified using a simplified 2D idealized knife-edge ridge model. Four line sources located on the Hawaiian Ridge reproduce the interference pattern of sea surface height and energy fl...


Journal of Physical Oceanography | 2009

Model Estimates of M2 Internal Tide Generation over Mid-Atlantic Ridge Topography

N. V. Zilberman; Janet M. Becker; Mark A. Merrifield; Glenn S. Carter

Abstract The conversion of barotropic to baroclinic M2 tidal energy is examined for a section of the Mid-Atlantic Ridge in the Brazil Basin using a primitive equation model. Model runs are made with different horizontal smoothing (1.5, 6, and 15 km) applied to a 192 km × 183 km section of multibeam bathymetry to characterize the influence of topographic resolution on the model conversion rates. In all model simulations, barotropic to baroclinic conversion is highest over near- and supercritical slopes on the flanks of abyssal hills and discordant zones. From these generation sites, internal tides propagate upward and downward as tidal beams. The most energetic internal tide mode generated is mode 2, consistent with the dominant length scales of the topographic slope spectrum (50 km). The topographic smoothing significantly affects the model conversion amplitudes, with the domain-averaged conversion rate from the 1.5-km run (15.1 mW m−2) 4% and 19% higher than for the 6-km (14.5 mW m−2) and 15-km runs (12....


Journal of Physical Oceanography | 2011

Incoherent Nature of M2 Internal Tides at the Hawaiian Ridge

N. V. Zilberman; Mark A. Merrifield; Glenn S. Carter; Douglas S. Luther; Murray D. Levine; Timothy J. Boyd

AbstractMoored current, temperature, and conductivity measurements are used to study the temporal variability of M2 internal tide generation above the Kaena Ridge, between the Hawaiian islands of Oahu and Kauai. The energy conversion from the barotropic to baroclinic tide measured near the ridge crest varies by a factor of 2 over the 6-month mooring deployment (0.5–1.1 W m−2). The energy flux measured just off the ridge undergoes a similar modulation as the ridge conversion. The energy conversion varies largely because of changes in the phase of the perturbation pressure, suggesting variable work done on remotely generated internal tides. During the mooring deployment, low-frequency current and stratification fluctuations occur on and off the ridge. Model simulations suggest that these variations are due to two mesoscale eddies that passed through the region. The impact of these eddies on low-mode internal tide propagation over the ridge crest is considered. It appears that eddy-related changes in stratif...


Journal of Physical Oceanography | 2010

The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I: Observations and Numerical Predictions*

Cédric P. Chavanne; Pierre Flament; Glenn S. Carter; Mark A. Merrifield; Douglas S. Luther; Edward D. Zaron; Klaus-Werner Gurgel

Abstract Observations of semidiurnal currents from high-frequency radio Doppler current meters and moored acoustic Doppler current profilers (ADCPs) in the Kauai Channel, Hawaii, are described and compared with two primitive equation numerical models of the tides. The Kauai Channel, separating the islands of Oahu and Kauai, is a site of strong internal tide generation by the barotropic tides flowing over Kaena Ridge, the subsurface extension of Oahu. The nature and impacts of internal tide generation in the Kauai Channel were intensively studied during the 2002–03 near-field component of the Hawaii Ocean Mixing Experiment. Comparisons of observed coherent (i.e., phase locked to the astronomical forcing) M2 and S2 surface currents with model predictions show good agreement for the phases, indicating propagation of internal tides away from the ridge. Although the predicted M2 and S2 surface currents are similar (except for their magnitudes), as expected for internal waves at periods closer to each other (12...


Journal of Physical Oceanography | 2013

Effects of Remote Generation Sites on Model Estimates of M2 Internal Tides in the Philippine Sea

Colette Kerry; Brian S. Powell; Glenn S. Carter

AbstractThis study investigates the impact of remotely generated internal tides on model estimates of barotropic to baroclinic tidal conversion for two generation sites bounding the Philippine Sea: the Luzon Strait and the Mariana Island Arc. A primitive equation model is used to characterize the internal tides generated by the principal semidiurnal tide (M2) over a domain encompassing the two generation sites. Energetic internal tides are generated at the Luzon Strait where nearly 17 GW of barotropic tide energy is converted to baroclinic energy, of which 44% (4.78 GW) is radiated eastward into the Philippine Sea. From the Mariana Arc, baroclinic energy propagates westward into the Philippine Sea as a result of 3.82 GW of barotropic to baroclinic energy conversion. Simulations that focus on each generation site without influence of the other are performed, and comparisons show that remotely generated internal tides have a significant effect on local conversion at the two sites. Total conversion is greate...

Collaboration


Dive into the Glenn S. Carter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Merrifield

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Ren-Chieh Lien

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Rob A. Hall

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. Howe

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Douglas S. Luther

University of Hawaii at Manoa

View shared research outputs
Researchain Logo
Decentralizing Knowledge