Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Matsuoka is active.

Publication


Featured researches published by T. Matsuoka.


Optics Express | 2008

Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate.

V. Yanovsky; V. Chvykov; G. Kalinchenko; P. Rousseau; T. Planchon; T. Matsuoka; Anatoly Maksimchuk; John A. Nees; Gilles Cheriaux; G. Mourou; Karl Krushelnick

We demonstrate the highest intensity - 300 TW laser by developing booster amplifying stage to the 50-TW-Ti:sapphire laser (HERCULES). To our knowledge this is the first multi-100TW-scale laser at 0.1 Hz repetition rate.


Medical Physics | 2008

Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

Stepan Bulanov; Andrei Brantov; Valery Yu. Bychenkov; V. Chvykov; G. Kalinchenko; T. Matsuoka; P. Rousseau; S. Reed; V. Yanovsky; K. Krushelnick; Dale W. Litzenberg; Anatoly Maksimchuk

Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10(-1) achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10(22) W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.


Physics of Plasmas | 2010

Generation of GeV protons from 1 PW laser interaction with near critical density targets.

Stepan Bulanov; Valery Yu. Bychenkov; V. Chvykov; G. Kalinchenko; Dale W. Litzenberg; T. Matsuoka; A. G. R. Thomas; L. Willingale; V. Yanovsky; K. Krushelnick; Anatoly Maksimchuk

The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.


Applied Physics Letters | 2011

X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

S. Kneip; C. McGuffey; F. Dollar; M. S. Bloom; V. Chvykov; G. Kalintchenko; K. Krushelnick; Anatoly Maksimchuk; S. P. D. Mangles; T. Matsuoka; Z. Najmudin; C. A. J. Palmer; J. Schreiber; W. Schumaker; A. G. R. Thomas; V. Yanovsky

We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.


Physics of Plasmas | 2008

Studies of laser wakefield structures and electron acceleration in underdense plasmas

Anatoly Maksimchuk; Steven A. Reed; Stepan Bulanov; V. Chvykov; G. Kalintchenko; T. Matsuoka; Christopher McGuffey; G. Mourou; Natalia M. Naumova; John A. Nees; P. Rousseau; V. Yanovsky; Karl Krushelnick; Nicholas H. Matlis; Serguei Y. Kalmykov; Gennady Shvets; M. C. Downer; C. R. Vane; James R. Beene; D. W. Stracener; D. R. Schultz

Experiments on electron acceleration and optical diagnostics of laser wakes were performed on the HERCULES facility in a wide range of laser and plasma parameters. Using frequency domain holography we demonstrated single shot visualization of individual plasma waves, produced by 40TW, 30fs laser pulses focused to the intensity of 1019W∕cm2 onto a supersonic He gas jet with plasma densities ne<1019cm−3. These holographic “snapshots” capture the variation in shape of the plasma wave with distance behind the driver, and resolve wave front curvature seen previously only in simulations. High-energy quasimonoenergetic electron beams were generated using plasma density in the range 1.5×1019≤ne≤3.5×1019cm−3. These experiments demonstrated that the energy, charge, divergence, and pointing stability of the beam can be controlled by changing ne, and that higher electron energies and more stable beams are produced for lower densities. An optimized quasimonoenergetic beam of over 300MeV and 10mrad angular divergence i...


Physics of Plasmas | 2011

Comparison of bulk and pitcher-catcher targets for laser-driven neutron production

L. Willingale; G. M. Petrov; Anatoly Maksimchuk; Jack Davis; R. R. Freeman; A. S. Joglekar; T. Matsuoka; C. D. Murphy; V. Ovchinnikov; A. G. R. Thomas; L. Van Woerkom; K. Krushelnick

Laser-driven d(d, n)-3He beam-target fusion neutron production from bulk deuterated plastic (CD) targets is compared with a pitcher-catcher target scheme using an identical laser and detector arrangement. For laser intensities in the range of (1–3) × 1019 W cm−2, it was found that the bulk targets produced a high yield (5 × 104 neutrons per steradian) beamed preferentially in the laser propagation direction. Numerical modeling shows the importance of considering the temperature adjusted stopping powers to correctly model the neutron production. The bulk CD targets have a high background target temperature leading to a reduced stopping power for the deuterons, which increases the probability of generating neutrons by fusion. Neutron production from the pitcher-catcher targets was not as efficient since it does not benefit from the reduced stopping power in the cold catcher target. Also, the inhibition of the deuteron acceleration by a proton rich contamination layer significantly reduces the pitcher-catche...


Plasma Physics and Controlled Fusion | 2011

Front versus rear side light-ion acceleration from high-intensity laser–solid interactions

L. Willingale; G. M. Petrov; Anatoly Maksimchuk; Jack Davis; R. R. Freeman; T. Matsuoka; C. D. Murphy; V. Ovchinnikov; L. Van Woerkom; K. Krushelnick

The source of ions accelerated from high-intensity laser interactions with thin foil targets is investigated by coating a deuterated plastic layer either on the front, rear or both surfaces of thin foil targets. The originating surface of the deuterons is therefore known and this method is used to assess the relative source contributions and maximum energies using a Thomson parabola spectrometer to obtain high-resolution light-ion spectra. Under these experimental conditions, laser intensity of (0.5‐2.5) × 10 19 Wc m −2 , pulse duration of 400 fs and target thickness of 6‐13 µm, deuterons originating from the front surface can gain comparable maximum energies as those from the rear surface and spectra from either side can deviate from Maxwellian. Two-dimensional particle-in-cell simulations model the acceleration and show that any presence of a proton rich contamination layer over the surface is detrimental to the deuteron acceleration from the rear surface, whereas it is likely to be less influential on the front side acceleration mechanism. (Some figures in this article are in colour only in the electronic version)


Applied Physics Letters | 2009

Relativistic plasma shutter for ultraintense laser pulses

S. Reed; T. Matsuoka; Stepan Bulanov; M. Tampo; V. Chvykov; G. Kalintchenko; P. Rousseau; V. Yanovsky; R. Kodama; Dale W. Litzenberg; Karl Krushelnick; Anatoly Maksimchuk

A relativistic plasma shutter technique is proposed and tested to remove the sub-100 ps pedestal of a high-intensity laser pulse. The shutter is an ultrathin foil placed before the target of interest. As the leading edge of the laser ionizes the shutter material it will expand into a relativistically underdense plasma allowing for the peak pulse to propagate through while rejecting the low intensity pedestal. An increase in the laser temporal contrast is demonstrated by measuring characteristic signatures in the accelerated proton spectra and directionality from the interaction of 30 TW pulses with ultrathin foils along with supporting hydrodynamic and particle-in-cell simulations.


Physics of Plasmas | 2013

High contrast ion acceleration at intensities exceeding 1021 Wcm−2a)

F. Dollar; C. Zulick; T. Matsuoka; C. McGuffey; S. S. Bulanov; V. Chvykov; J. Davis; G. Kalinchenko; G. M. Petrov; L. Willingale; V. Yanovsky; A. Maksimchuk; A. G. R. Thomas; K. Krushelnick

Ion acceleration from short pulse laser interactions at intensities of 2×1021Wcm−2 was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affects the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.


Physics of Plasmas | 2009

Guiding of 35 TW laser pulses in ablative capillary discharge waveguides

C. McGuffey; M. Levin; T. Matsuoka; V. Chvykov; G. Kalintchenko; P. Rousseau; V. Yanovsky; A. Zigler; Anatoly Maksimchuk; Karl Krushelnick

An ablatively driven capillary discharge plasma waveguide has been used to demonstrate guiding of 30 fs, 35 TW laser pulses over distances up to 3 cm with incident intensity in excess of 4×1018 W/cm2. The plasma density range over which good guiding was observed was 1–3×1018 cm−3. The quality of the laser spot at the exit mode was observed to be similar to that at the entrance and the transmitted energy was ∼25% at input powers of 35 TW. The transmitted laser spectrum typically showed blueshifting due to ionization of carbon and hydrogen atoms in the capillary plasma by the high intensity laser pulse. The low plasma density regime in which these capillaries operate makes these devices attractive for use in single stage electron accelerators to multi-GeV energies driven by petawatt class laser systems.

Collaboration


Dive into the T. Matsuoka's collaboration.

Top Co-Authors

Avatar

V. Chvykov

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Yanovsky

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Rousseau

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

F. Dollar

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. McGuffey

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge