Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Rao is active.

Publication


Featured researches published by T. Rao.


Applied Physics Letters | 2011

A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

T. Vecchione; I. Ben-Zvi; D. H. Dowell; J. Feng; T. Rao; John Smedley; Weishi Wan; Howard A. Padmore

Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.


Archive | 2004

Secondary Emission Enhanced Photoinjector

I. Ben-Zvi; Xiangyun Chang; P. D. Johnson; J. Kewisch; T. Rao

We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the “gun” through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: 1. Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. 2. Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons.3. Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. 4. Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. 5. Production of high average currents, up to ampere class. 6. Encapsulated design, making the “load-lock” systems unnecessary. Section


APL Materials | 2013

Bi-alkali antimonide photocathodes for high brightness accelerators

Susanne Schubert; Miguel Ruiz-Osés; I. Ben-Zvi; T. Kamps; Xue Liang; Erik M. Muller; K. Müller; Howard A. Padmore; T. Rao; X. Tong; T. Vecchione; John Smedley

Alkali-antimonide photocathodes were grown on Si(100) and studied by means of XPS and UHV-AFM to validate the growth procedure and morphology of this material. The elements were evaporated sequentially at elevated substrate temperatures (first Sb, second K, third Cs). The generated intermediate K-Sb compound itself is a photocathode and the composition of K2.4Sb is close to the favored K3Sb stoichiometry. After cesium deposition, the surface layer is cesium enriched. The determined rms roughness of 25 nm results in a roughness domination of the emittance in the photoinjector already above 3 MV/m.


Journal of Applied Physics | 2010

Multiscale three-dimensional simulations of charge gain and transport in diamond

D. A. Dimitrov; Richard Busby; John R. Cary; I. Ben-Zvi; T. Rao; John Smedley; Xiangyun Chang; Jeffrey W. Keister; Qiong Wu; Erik Muller

A promising new concept of a diamond-amplified photocathode for generation of high-current, high-brightness, and low thermal emittance electron beams was recently proposed and is currently under active development. Detailed understanding of physical processes with multiple energy and time scales is required to design reliable and efficient diamond-amplifier cathodes. We have implemented models, within the VORPAL computational framework, to simulate secondary electron generation and charge transport in diamond in order to facilitate the investigation of the relevant effects involved. The models include inelastic scattering of electrons and holes for generation of electron-hole pairs, elastic, phonon, and charge impurity scattering. We describe the integrated modeling capabilities we developed and present results on charge gain and collection efficiency as a function of primary electron energy and applied electric field. We compare simulation results with available experimental data. The simulations show an overall qualitative agreement with the observed charge gain from transmission mode experiments and have enabled better understanding of the collection efficiency measurements.


ieee particle accelerator conference | 2007

Status of Nb-Pb superconducting RF-GUN cavities

Jacek Sekutowicz; J. Iversen; D. Klinke; D. Kostin; W. Moller; A. Muhs; Peter Kneisel; John Smedley; T. Rao; P. Strzyzewski; A. Soltan; Z. Li; K. Ko; L. Xiao; R. Lefferts; A. Lipski; M. Ferrario

We report on the progress and status of an electron RF* gun made of two superconductors: niobium and lead [1]. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead. The design of RF-gun and performance of 3 test cavities without and with the emitting lead spot are reported in this contribution. Measured quantum efficiency for lead at 2 K is presented briefly. More details are reported in [9].


Proceedings of the 2005 Particle Accelerator Conference | 2005

Electron Cooling of RHIC

I. Ben-Zvi; Vladimir N. Litvinenko; D. Barton; D. Beavis; M. Blaskiewicz; Joseph Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; Y. Eidelman; A. Fedotov; W. Fischer; D. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A. Jain; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; W. W. MacKay; G. Mahler; N. Malitsky; G. McIntyre; W. Meng; K.A.M. Mirabella

We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Progress on Lead Photocathodes for Superconducting Injectors

John Smedley; T. Rao; Jacek Sekutowicz; Peter Kneisel; Jerzy Langner; Pawel Strzyzewski; Richard Lefferts; Andrzej Lipski

We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.


APL Materials | 2014

Direct observation of bi-alkali antimonide photocathodes growth via in operando x-ray diffraction studies

Miguel Ruiz-Osés; Susanne Schubert; Klaus Attenkofer; I. Ben-Zvi; Xue Liang; Erik M. Muller; Howard A. Padmore; T. Rao; T. Vecchione; Jared Wong; Junqi Xie; John Smedley

Alkali antimonides have a long history as visible-light-sensitive photocathodes. This work focuses on the process of fabrication of the bi-alkali photocathodes, K2CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 A . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K2CsSb upon cesium deposition, is correlated with changes in the quantum efficiency.


Proceedings of the 2005 Particle Accelerator Conference | 2005

Extremely High Current, High-Brightness Energy Recovery Linac

I. Ben-Zvi; D. Barton; D. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; Xiangyun Chang; R. Connolly; D. Gassner; J. Grimes; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; Vladimir N. Litvinenko; G. McIntyre; W. Meng; T. Nehring; A. Nicoletti; D. Pate; B. Oerter; J. Rank; T. Rao; T. Roser; T. Russo

Next generation light-sources, electron coolers, high-power FELs, Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.


Archive | 2006

Nb-Pb Superconducting RF Gun

Jacek Sekutowicz; J. Iversen; G. Kreps; W. Moller; W. Singer; X. Singer; Desy; I. Ben-Zvi; A. Burrill; John Smedley; T. Rao; M. Ferrario; Frascati; Peter Kneisel; Jefferson Lab; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; Karol Szałowski; U Lodz; K. Ko; Liling Xiao

We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

Collaboration


Dive into the T. Rao's collaboration.

Top Co-Authors

Avatar

I. Ben-Zvi

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John Smedley

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiangyun Chang

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Burrill

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Kayran

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Qiong Wu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Vladimir N. Litvinenko

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Kewisch

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Gassner

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge