Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Ryan Withers is active.

Publication


Featured researches published by T. Ryan Withers.


Molecular Microbiology | 2011

Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1

F. Heath Damron; Michael R. Davis; T. Ryan Withers; Robert K. Ernst; Joanna B. Goldberg; Guangli Yu; Hongwei D. Yu

Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild‐type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non‐mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA‐AMV) induced mucoidy in both these laboratory strains and early lung colonizing non‐mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA‐AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two‐component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA‐AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.


PLOS ONE | 2013

Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa

Yeshi Yin; T. Ryan Withers; Xin Wang; Hongwei D. Yu

Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgUA61V). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgUA61V, 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ70). Induction of AlgUA61V in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgUA61V is functional in activating alginate production. Furthermore, the level of AlgUA61V was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgUA61V had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ70 orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (PssrA) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ70 factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD.


Antimicrobial Agents and Chemotherapy | 2013

Effect of Intracellular Expression of Antimicrobial Peptide LL-37 on Growth of Escherichia coli Strain TOP10 under Aerobic and Anaerobic Conditions

Wei Liu; Shi Lei Dong; Fei Xu; Xue Qin Wang; T. Ryan Withers; Hongwei D. Yu; Xin Wang

ABSTRACT Antimicrobial peptides (AMPs) can cause lysis of target bacteria by directly inserting themselves into the lipid bilayer. This killing mechanism confounds the identification of the intracellular targets of AMPs. To circumvent this, we used a shuttle vector containing the inducible expression of a human cathelicidin-related AMP, LL-37, to examine its effect on Escherichia coli TOP10 under aerobic and anaerobic growth conditions. Induction of LL-37 caused growth inhibition and alteration in cell morphology to a filamentous phenotype. Further examination of the E. coli cell division protein FtsZ revealed that LL-37 did not interact with FtsZ. Moreover, intracellular expression of LL-37 results in the enhanced production of reactive oxygen species (ROS), causing lethal membrane depolarization under aerobic conditions. Additionally, the membrane permeability was increased after intracellular expression of LL37 under both aerobic and anaerobic conditions. Transcriptomic analysis revealed that intracellular LL-37 mainly affected the expression of genes related to energy production and carbohydrate metabolism. More specifically, genes related to oxidative phosphorylation under both aerobic and anaerobic growth conditions were affected. Collectively, our current study demonstrates that intracellular expression of LL-37 in E. coli can inhibit growth under aerobic and anaerobic conditions. While we confirmed that the generation of ROS is a bactericidal mechanism for LL-37 under aerobic growth conditions, we also found that the intracellular accumulation of cationic LL-37 influences the redox and ion status of the cells under both growth conditions. These data suggest that there is a new AMP-mediated bacterial killing mechanism that targets energy metabolism.


MicrobiologyOpen | 2013

Truncation of type IV pilin induces mucoidy in Pseudomonas aeruginosa strain PAO579

T. Ryan Withers; F. Heath Damron; Yeshi Yin; Hongwei D. Yu

Pseudomonas aeruginosa is a Gram negative, opportunistic pathogen that uses the overproduction of alginate, a surface polysaccharide, to form biofilms in vivo. Overproduction of alginate, also known as mucoidy, affords the bacterium protection from the hosts defenses and facilitates the establishment of chronic lung infections in individuals with cystic fibrosis. Expression of the alginate biosynthetic operon is primarily controlled by the alternative sigma factor AlgU (AlgT/σ22). In a nonmucoid strain, AlgU is sequestered by the transmembrane antisigma factor MucA to the cytoplasmic membrane. AlgU can be released from MucA via regulated intramembrane proteolysis by proteases AlgW and MucP causing the conversion to mucoidy. Pseudomonas aeruginosa strain PAO579, a derivative of the nonmucoid strain PAO1, is mucoid due to an unidentified mutation (muc‐23). Using whole genome sequencing, we identified 16 nonsynonymous and 15 synonymous single nucleotide polymorphisms (SNP). We then identified three tandem single point mutations in the pilA gene (PA4525), as the cause of mucoidy in PAO579. These tandem mutations generate a premature stop codon resulting in a truncated version of PilA (PilA108), with a C‐terminal motif of phenylalanine‐threonine‐phenylalanine (FTF). Inactivation of pilA108 confirmed it was required for mucoidy. Additionally, algW and algU were also required for mucoidy of PAO579. Western blot analysis indicated that MucA was less stable in PAO579 than nonmucoid PAO1 or PAO381. The mucoid phenotype and high PalgU and PalgD promoter activities of PAO579 require pilA108, algW, algU, and rpoN encoding the alternative sigma factor σ54. We also observed that RpoN regulates expression of algW and pilA in PAO579. Together, these results suggest that truncation in type IV pilin in P. aeruginosa strain PAO579 can induce mucoidy through an AlgW/AlgU‐dependent pathway.


Journal of Visualized Experiments | 2014

Identification of Novel Genes Associated with Alginate Production in Pseudomonas aeruginosa Using Mini-himar1 Mariner Transposon-mediated Mutagenesis

T. Ryan Withers; Yeshi Yin; Hongwei D. Yu

Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ(22)). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.


BMC Microbiology | 2013

Expression of mucoid induction factor MucE is dependent upon the alternate sigma factor AlgU in Pseudomonas aeruginosa

Yeshi Yin; F. Heath Damron; T. Ryan Withers; Christopher L. Pritchett; Xin Wang; Michael J. Schurr; Hongwei D. Yu

BackgroundAlginate overproduction in P. aeruginosa, also referred to as mucoidy, is a poor prognostic marker for patients with cystic fibrosis (CF). We previously reported the construction of a unique mucoid strain which overexpresses a small envelope protein MucE leading to activation of the protease AlgW. AlgW then degrades the anti-sigma factor MucA thus releasing the alternative sigma factor AlgU/T (σ22) to initiate transcription of the alginate biosynthetic operon.ResultsIn the current study, we mapped the mucE transcriptional start site, and determined that PmucE activity was dependent on AlgU. Additionally, the presence of triclosan and sodium dodecyl sulfate was shown to cause an increase in PmucE activity. It was observed that mucE-mediated mucoidy in CF isolates was dependent on both the size of MucA and the genotype of algU. We also performed shotgun proteomic analysis with cell lysates from the strains PAO1, VE2 (PAO1 with constitutive expression of mucE) and VE2ΔalgU (VE2 with in-frame deletion of algU). As a result, we identified nine algU-dependent and two algU-independent proteins that were affected by overexpression of MucE.ConclusionsOur data indicates there is a positive feedback regulation between MucE and AlgU. Furthermore, it seems likely that MucE may be part of the signal transduction system that senses certain types of cell wall stress to P. aeruginosa.


Journal of Bacteriology | 2012

Draft Genome Sequence for Pseudomonas aeruginosa Strain PAO579, a Mucoid Derivative of PAO381

T. Ryan Withers; Shannon L. Johnson; Hongwei D. Yu

Pseudomonas aeruginosa is an opportunistic pathogen that establishes a chronic lung infection in individuals afflicted with cystic fibrosis. Here, we announce the draft genome of P. aeruginosa strain PAO579, an alginate-overproducing derivative of strain PAO381.


Molecular Microbiology | 2014

Overexpression of CupB5 activates alginate overproduction in Pseudomonas aeruginosa by a novel AlgW-dependent mechanism.

Anna K. de Regt; Yeshi Yin; T. Ryan Withers; Xin Wang; Tania A. Baker; Robert T. Sauer; Hongwei D. Yu

In Pseudomonas aeruginosa, alginate overproduction, also known as mucoidy, is negatively regulated by the transmembrane protein MucA, which sequesters the alternative sigma factor AlgU. MucA is degraded via a proteolysis pathway that frees AlgU from sequestration, activating alginate biosynthesis. Initiation of this pathway normally requires two signals: peptide sequences in unassembled outer‐membrane proteins (OMPs) activate the AlgW protease, and unassembled lipopolysaccharides bind periplasmic MucB, releasing MucA and facilitating its proteolysis by activated AlgW. To search for novel alginate regulators, we screened a transposon library in the non‐mucoid reference strain PAO1, and identified a mutant that confers mucoidy through overexpression of a protein encoded by the chaperone‐usher pathway gene cupB5. CupB5‐dependent mucoidy occurs through the AlgU pathway and can be reversed by overexpression of MucA or MucB. In the presence of activating OMP peptides, peptides corresponding to a region of CupB5 needed for mucoidy further stimulated AlgW cleavage of MucA in vitro. Moreover, the CupB5 peptide allowed OMP‐activated AlgW cleavage of MucA in the presence of the MucB inhibitor. These results support a novel mechanism for conversion to mucoidy in which the proteolytic activity of AlgW and its ability to compete with MucB for MucA is mediated by independent peptide signals.


Genome Announcements | 2013

Draft Genome Sequence of a Mucoid Isolate of Pseudomonas aeruginosa Strain C7447m from a Patient with Cystic Fibrosis.

Yeshi Yin; T. Ryan Withers; Shannon L. Johnson; Hongwei D. Yu

ABSTRACT Alginate overproduction by Pseudomonas aeruginosa, or mucoidy, plays an important role in the pathogenesis of chronic lung infections in cystic fibrosis (CF) patients. Here we report the draft genome sequence of a clinical isolate of mucoid P. aeruginosa strain C7447m from a CF patient with chronic lung infection.


Genome Announcements | 2013

Draft Genome Sequences of Two Alginate-Overproducing Variants of Pseudomonas aeruginosa, PAO1-VE2 and PAO1-VE13

Yeshi Yin; T. Ryan Withers; Richard M. Niles; Shannon L. Johnson; Hongwei D. Yu

ABSTRACT The small envelope protein MucE and the sensor kinase KinB are a positive and negative alginate regulator, respectively. Here, we announce the draft genome sequences of the alginate-overproducing variants Pseudomonas aeruginosa PAO1-VE2 (PAO1 with constitutive expression of mucE) and PAO1-VE13 (PAO1 with kinB inactivated). Both mutants were generated from a transposon mutagenesis screen.

Collaboration


Dive into the T. Ryan Withers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon L. Johnson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna K. de Regt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert T. Sauer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tania A. Baker

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher L. Pritchett

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Schurr

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge