Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shannon L. Johnson is active.

Publication


Featured researches published by Shannon L. Johnson.


Journal of Biological Chemistry | 2012

Three Acyltransferases and Nitrogen-responsive Regulator Are Implicated in Nitrogen Starvation-induced Triacylglycerol Accumulation in Chlamydomonas

Nanette R. Boyle; Mark Dudley Page; Bensheng Liu; Ian K. Blaby; David Casero; Janette Kropat; Shawn J. Cokus; Anne Hong-Hermesdorf; Johnathan Shaw; Steven J. Karpowicz; Sean D. Gallaher; Shannon L. Johnson; Christoph Benning; Matteo Pellegrini; Arthur R. Grossman; Sabeeha S. Merchant

Background: Nitrogen-starvation and other stresses induce triacylglycerol (TAG) accumulation in algae, but the relevant enzymes and corresponding signal transduction pathways are unknown. Results: RNA-Seq and genetic analysis revealed three acyltransferases that contribute to TAG accumulation. Conclusion: TAG synthesis results from recycling of membrane lipids and also by acylation of DAG. Significance: The genes are potential targets for manipulating TAG hyperaccumulation. Algae have recently gained attention as a potential source for biodiesel; however, much is still unknown about the biological triggers that cause the production of triacylglycerols. We used RNA-Seq as a tool for discovering genes responsible for triacylglycerol (TAG) production in Chlamydomonas and for the regulatory components that activate the pathway. Three genes encoding acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. DGAT1 and DGTT1 also show increased mRNA abundance in other TAG-accumulating conditions (minus sulfur, minus phosphorus, minus zinc, and minus iron). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared with the parent strain, CC-4425, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analyses suggest than a SQUAMOSA promoter-binding protein domain transcription factor, whose mRNA increases precede that of lipid biosynthesis genes like DGAT1, is a candidate regulator of the nitrogen deficiency responses. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared with the parental strain in nitrogen-starvation conditions and is unaffected by other nutrient stresses, suggesting the specificity of this regulator for nitrogen-deprivation conditions.


Microbial Ecology | 2003

Small-Scale Vertical Distribution of Bacterial Biomass and Diversity in Biological Soil Crusts from Arid Lands in the Colorado Plateau

Ferran Garcia-Pichel; Shannon L. Johnson; D. Youngkin; Jayne Belnap

We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations, tenfold larger than those in uncrusted, deeper soils. The plate counts were not always consistent with more direct estimates of microbial biomass. Bacterial populations peaked at the immediate subsurface (1–2 mm) in light-appearing, young crusts, and at the surface (0–1 mm) in well-developed, dark crusts, which corresponds to the location of cyanobacterial populations. Bacterial abundance decreased with depth below these horizons. Spatially resolved DGGE fingerprints of Bacterial 16S rRNA genes demonstrated the presence of highly diverse natural communities, but we could detect neither trends with depth in bacterial richness or diversity, nor a difference in diversity indices between crust types. Fingerprints, however, revealed the presence of marked stratification in the structure of the microbial communities, probably a result of vertical gradients in physicochemical parameters. Sequencing and phylogenetic analyses indicated that most of the naturally occurring bacteria are novel types, with low sequence similarity (83–93%) to those available in public databases. DGGE analyses of the VAC populations indicated communities of lower diversity, with most types having sequences more than 94% similar to those in public databases. Our study indicates that soil crusts represent small-scale mantles of fertility in arid ecosystems, harboring vertically structured, little-known bacterial populations that are not well represented by standard cultivation methods.


The Plant Cell | 2013

Systems-Level Analysis of Nitrogen Starvation–Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant

Ian K. Blaby; Anne G. Glaesener; Tabea Mettler; Sorel Fitz-Gibbon; Sean D. Gallaher; Bensheng Liu; Nanette R. Boyle; Janette Kropat; Mark Stitt; Shannon L. Johnson; Christoph Benning; Matteo Pellegrini; David Casero; Sabeeha S. Merchant

Transcriptomics of N-deprived Chlamydomonas sta6, CC-4349 (a wild-type strain), and three complemented STA6 strains showed upregulation of glyoxylate and gluconeogenesis pathways, validated by enzyme and metabolite analyses. Resequencing of all strains revealed that sta6 and CC-4349 are distantly related, highlighting the importance of using complemented strains for relating phenotype to genotype. To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall–deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation–induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 102) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.


PLOS ONE | 2012

Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2.

Sanaa Ahmed; Joy Awosika; Carson Baldwin; Kimberly A. Bishop-Lilly; Biswajit Biswas; S. M. Broomall; Patrick Chain; Olga Chertkov; Otar Chokoshvili; Susan R. Coyne; Karen W. Davenport; J. Chris Detter; William Dorman; Tracy Erkkila; Jason P. Folster; K. G. Frey; Matroner George; Cheryl D. Gleasner; Matthew Henry; Karen K. Hill; Kyle S. Hubbard; Joseph Insalaco; Shannon L. Johnson; Aaron Kitzmiller; Michael Krepps; Chien-Chi Lo; Truong Luu; Lauren McNew; Timothy D. Minogue; Christine Munk

In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C–3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL–2050 and 2009EL–2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL–2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.


The ISME Journal | 2012

Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands.

Cheryl R. Kuske; Chris M. Yeager; Shannon L. Johnson; Lawrence O. Ticknor; Jayne Belnap

The impact of 10 years of annual foot trampling on soil biocrusts was examined in replicated field experiments at three cold desert sites of the Colorado Plateau, USA. Trampling detrimentally impacted lichens and mosses, and the keystone cyanobacterium, Microcoleus vaginatus, resulting in increased soil erosion and reduced C and N concentrations in surface soils. Trampled biocrusts contained approximately half as much extractable DNA and 20–52% less chlorophyll a when compared with intact biocrusts at each site. Two of the three sites also showed a decline in scytonemin-containing, diazotrophic cyanobacteria in trampled biocrusts. 16S rRNA gene sequence and terminal restriction fragment length polymorphism (T-RFLP) analyses of soil bacteria from untrampled and trampled biocrusts demonstrated a reduced proportion (23–65% reduction) of M. vaginatus and other Cyanobacteria in trampled plots. In parallel, other soil bacterial species that are natural residents of biocrusts, specifically members of the Actinobacteria, Chloroflexi and Bacteroidetes, became more readily detected in trampled than in untrampled biocrusts. Replicate 16S rRNA T-RFLP profiles from trampled biocrusts at all three sites contained significantly more fragments (n=17) than those of untrampled biocrusts (n⩽6) and exhibited much higher variability among field replicates, indicating transition to an unstable disturbed state. Despite the dramatic negative impacts of trampling on biocrust physical structure and composition, M. vaginatus could still be detected in surface soils after 10 years of annual trampling, suggesting the potential for biocrust re-formation over time. Physical damage of biocrusts, in concert with changing temperature and precipitation patterns, has potential to alter performance of dryland ecosystems for decades.


Eukaryotic Cell | 2014

The Path to Triacylglyceride Obesity in the sta6 Strain of Chlamydomonas reinhardtii

Ursula Goodenough; Ian K. Blaby; David Casero; Sean D. Gallaher; Carrie Goodson; Shannon L. Johnson; Jae-Hyeok Lee; Sabeeha S. Merchant; Matteo Pellegrini; Robyn Roth; Jannette Rusch; Manmilan Singh; James G. Umen; Taylor L. Weiss; Tuya Wulan

ABSTRACT When the sta6 (starch-null) strain of the green microalga Chlamydomonas reinhardtii is nitrogen starved in acetate and then “boosted” after 2 days with additional acetate, the cells become “obese” after 8 days, with triacylglyceride (TAG)-filled lipid bodies filling their cytoplasm and chloroplasts. To assess the transcriptional correlates of this response, the sta6 strain and the starch-forming cw15 strain were subjected to RNA-Seq analysis during the 2 days prior and 2 days after the boost, and the data were compared with published reports using other strains and growth conditions. During the 2 h after the boost, ∼425 genes are upregulated ≥2-fold and ∼875 genes are downregulated ≥2-fold in each strain. Expression of a small subset of “sensitive” genes, encoding enzymes involved in the glyoxylate and Calvin-Benson cycles, gluconeogenesis, and the pentose phosphate pathway, is responsive to culture conditions and genetic background as well as to boosting. Four genes—encoding a diacylglycerol acyltransferase (DGTT2), a glycerol-3-P dehydrogenase (GPD3), and two candidate lipases (Cre03.g155250 and Cre17.g735600)—are selectively upregulated in the sta6 strain. Although the bulk rate of acetate depletion from the medium is not boost enhanced, three candidate acetate permease-encoding genes in the GPR1/FUN34/YaaH superfamily are boost upregulated, and 13 of the “sensitive” genes are strongly responsive to the cells acetate status. A cohort of 64 autophagy-related genes is downregulated by the boost. Our results indicate that the boost serves both to avert an autophagy program and to prolong the operation of key pathways that shuttle carbon from acetate into storage lipid, the combined outcome being enhanced TAG accumulation, notably in the sta6 strain.


Genome Research | 2013

Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome

Michael S. Fitzsimons; Mark Novotny; Chien-Chi Lo; Armand E. K. Dichosa; Joyclyn Yee-Greenbaum; Jeremy P. Snook; Wei Gu; Olga Chertkov; Karen W. Davenport; Kim McMurry; Krista G. Reitenga; Ashlynn R. Daughton; Jian He; Shannon L. Johnson; Cheryl D. Gleasner; Patti L. Wills; B. Parson-Quintana; Patrick Chain; John C. Detter; Roger S. Lasken; Cliff Han

The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation. DNA is amplified directly from a single cell using the whole-genome amplification technique of multiple displacement amplification (MDA). However, MDA from a single chromosome copy suffers from amplification bias and a large loss of specificity from even very small amounts of DNA contamination, which makes assembling a genome difficult and completely finishing a genome impossible except in extraordinary circumstances. Gel microdrop cultivation allows culturing of a diverse microbial community and provides hundreds to thousands of genetically identical cells as input for an MDA reaction. We demonstrate the utility of this approach by comparing sequencing results of gel microdroplets and single cells following MDA. Bias is reduced in the MDA reaction and genome sequencing, and assembly is greatly improved when using gel microdroplets. We acquired multiple near-complete genomes for two bacterial species from human oral and stool microbiome samples. A significant amount of genome diversity, including single nucleotide polymorphisms and genome recombination, is discovered. Gel microdroplets offer a powerful and high-throughput technology for assembling whole genomes from complex samples and for probing the pan-genome of naturally occurring populations.


Journal of Bacteriology | 2011

Genome of the Cyanobacterium Microcoleus vaginatusFGP-2, a Photosynthetic Ecosystem Engineer of Arid Land Soil Biocrusts Worldwide

Shawn R. Starkenburg; Krista G. Reitenga; Tracey Freitas; Shannon L. Johnson; Patrick S. G. Chain; Ferran Garcia-Pichel; Cheryl R. Kuske

The filamentous cyanobacterium Microcoleus vaginatusis found in arid land soils worldwide. The genome of M. vaginatus strain FGP-2 allows exploration of genes involved in photosynthesis, desiccation tolerance, alkane production, and other features contributing to this organisms ability to function as a major component of biological soil crusts in arid lands.


Infection, Genetics and Evolution | 2015

Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes

Theresa J. Smith; Karen K. Hill; Gary Xie; Brian T. Foley; Charles H. D. Williamson; Jeffrey T. Foster; Shannon L. Johnson; Olga Chertkov; Hazuki Teshima; Henry S. Gibbons; Lauren A. Johnsky; Mark Karavis; Leonard A. Smith

The whole genomes for six botulinum neurotoxin-producing clostridial strains were sequenced to provide references for under-represented toxin types, bivalent strains or unusual toxin complexes associated with a bont gene. The strains include three Clostridium botulinum Group I strains (CDC 297, CDC 1436, and Prevot 594), a Group II C. botulinum strain (Eklund 202F), a Group IV Clostridium argentinense strain (CDC 2741), and a Group V Clostridium baratii strain (Sullivan). Comparisons of the Group I genomic sequences revealed close relationships and conservation of toxin gene locations with previously published Group I C. botulinum genomes. The bont/F6 gene of strain Eklund 202F was determined to be a chimeric toxin gene composed of bont/F1 and bont/F2. The serotype G strain CDC 2741 remained unfinished in 20 contigs with the bont/G located within a 1.15Mb contig, indicating a possible chromosomal location for this toxin gene. Within the genome of C. baratii Sullivan strain, direct repeats of IS1182 insertion sequence (IS) elements were identified flanking the bont/F7 toxin complex that may be the mechanism of bont insertion into C. baratii. Highlights of the six strains are described and release of their genomic sequences will allow further study of unusual neurotoxin-producing clostridial strains.


PLOS ONE | 2011

Genomic Signatures of Strain Selection and Enhancement in Bacillus atrophaeus var. globigii ,a Historical Biowarfare Simulant

Henry S. Gibbons; S. M. Broomall; Lauren McNew; Hajnalka E. Daligault; Carol Chapman; David Bruce; Mark Karavis; Michael Krepps; Paul McGregor; Charles Hong; Kyong H. Park; Arya Akmal; Andrew B. Feldman; Jeffrey S. Lin; Wenling E. Chang; Brandon W. Higgs; Plamen A. Demirev; John Lindquist; Alvin T. Liem; Ed Fochler; Timothy D. Read; Roxanne Tapia; Shannon L. Johnson; Kimberly A. Bishop-Lilly; Chris Detter; Cliff Han; Shanmuga Sozhamannan; C. Nicole Rosenzweig; Evan W. Skowronski

Background Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS). Results Archival strains and two “present day” type strains were compared to simulant strains on different laboratory media. Several of the samples produced multiple colony morphotypes that differed from that of an archival isolate. To trace the microevolutionary history of these isolates, we obtained WGS data for several archival and present-day strains and morphotypes. Bacillus-wide phylogenetic analysis identified B. subtilis as the nearest neighbor to B. atrophaeus. The genome of B. atrophaeus is, on average, 86% identical to B. subtilis on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the “military” isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of “military” isolates on lactate-containing media, and showed that the “military” strains exhibited a hypersporulating phenotype. Conclusions Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation.

Collaboration


Dive into the Shannon L. Johnson's collaboration.

Top Co-Authors

Avatar

Karen W. Davenport

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hajnalka E. Daligault

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David Bruce

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. G. Frey

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

P. S. Chain

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. L. Redden

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Gustavo Palacios

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Jason T. Ladner

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Patrick Chain

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge