Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. S. Sreeprasad is active.

Publication


Featured researches published by T. S. Sreeprasad.


Journal of Hazardous Materials | 2011

Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification

T. S. Sreeprasad; Shihabudheen M. Maliyekkal; K.P. Lisha; T. Pradeep

This paper describes a versatile, and simple synthetic route for the preparation of a range of reduced graphene oxide (RGO)-metal/metal oxide composites and their application in water purification. The inherent reduction ability of RGO has been utilized to produce the composite structure from the respective precursor ions. Various spectroscopic and microscopic techniques were employed to characterize the as-synthesized composites. The data reveal that the RGO-composites are formed through a redox-like reaction between RGO and the metal precursor. RGO is progressively oxidized primarily to graphene oxide (GO) and the formed metal nanoparticles are anchored onto the carbon sheets. Metal ion scavenging applications of RGO-MnO(2) and RGO-Ag were demonstrated by taking Hg(II) as the model pollutant. RGO and the composites give a high distribution coefficient (K(d)), greater than 10 L g(-1) for Hg(II) uptake. The K(d) values for the composites are found to be about an order of magnitude higher compared to parent RGO and GO for this application. A methodology was developed to immobilize RGO-composites on river sand (RS) using chitosan as the binder. The as-supported composites are found to be efficient adsorbent candidates for field application.


Nano Reviews | 2011

Anisotropic nanomaterials: structure, growth, assembly, and functions.

P. R. Sajanlal; T. S. Sreeprasad; Akshaya Kumar Samal; T. Pradeep

Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.


Journal of Plant Nutrition | 2012

EFFECT OF NANOSCALE ZINC OXIDE PARTICLES ON THE GERMINATION, GROWTH AND YIELD OF PEANUT

T. N. V. K. V. Prasad; P. Sudhakar; Y. Sreenivasulu; P. Latha; V. Munaswamy; K. Raja Reddy; T. S. Sreeprasad; P. R. Sajanlal; T. Pradeep

An investigation was initiated to examine the effects of nanoscale zinc oxide particles on plant growth and development. In view of the widespread cultivation of peanut in India and in other parts of the globe and in view of the potential influence of zinc on its growth, this plant was chosen as the model system. Peanut seeds were separately treated with different concentrations of nanoscale zinc oxide (ZnO) and chelated bulk zinc sulfate (ZnSO4) suspensions (a common zinc supplement), respectively and the effect this treatment had on seed germination, seedling vigor, plant growth, flowering, chlorophyll content, pod yield and root growth were studied. Treatment of nanoscale ZnO (25 nm mean particle size) at 1000 ppm concentration promoted both seed germination and seedling vigor and in turn showed early establishment in soil manifested by early flowering and higher leaf chlorophyll content. These particles proved effective in increasing stem and root growth. Pod yield per plant was 34% higher compared to chelated bulk ZnSO4. Consequently, a field experiment was conducted during Rabi seasons of 2008–2009 and 2009–2010 with the foliar application of nanoscale ZnO particles at 15 times lower dose compared to the chelated ZnSO4 recommended and we recorded 29.5% and 26.3% higher pod yield, respectively, compared to chelated ZnSO4. The inhibitory effect with higher nanoparticle concentration (2000 ppm) reveals the need for judicious usage of these particles in such applications. This is the first report on the effect of nanoscale particles on peanut growth and yield.


ACS Applied Materials & Interfaces | 2012

Graphene from Sugar and its Application in Water Purification

Soujit Sen Gupta; T. S. Sreeprasad; Shihabudheen M. Maliyekkal; Sarit K. Das; T. Pradeep

This paper describes a green method for the synthesis of graphenic material from cane sugar, a common disaccharide. A suitable methodology was introduced to immobilize this material on sand without the need of any binder, resulting in a composite, referred to as graphene sand composite (GSC). Raman spectroscopy confirmed that the material is indeed graphenic in nature, having G and D bands at 1597 and 1338 cm(-1), respectively. It effectively removes contaminants from water. Here, we use rhodamine 6G (R6G) as a model dye and chloropyrifos (CP) as a model pesticide to demonstrate this application. The spectroscopic and microscopic analyses coupled with adsorption experiments revealed that physical adsorption plays a dominant role in the adsorption process. Isotherm data in batch experiments show an adsorption capacity of 55 mg/g for R6G and 48 mg/g for CP, which are superior to that of activated carbon. The adsorbent can be easily regenerated using a suitable eluent. This quick and cost-effective technique for the into a commercial water filter with appropriate engineering.


Small | 2013

Graphene: A Reusable Substrate for Unprecedented Adsorption of Pesticides

Shihabudheen M. Maliyekkal; T. S. Sreeprasad; Deepti Krishnan; Summayya Kouser; Abhishek Kumar Mishra; Umesh V. Waghmare; T. Pradeep

Unprecedented adsorption of chlorpyrifos (CP), endosulfan (ES), and malathion (ML) onto graphene oxide (GO) and reduced graphene oxide (RGO) from water is reported. The observed adsorption capacities of CP, ES, and ML are as high as ~1200, 1100, and 800 mg g(-1) , respectively. Adsorption is found to be insensitive to pH or background ions. The adsorbent is reusable and can be applied in the field with suitable modifications. A first-principles pseudopotential-based density functional analysis of graphene-water-pesticide interactions showed that the adsorption is mediated through water, while direct interactions between graphene and the pesticides is rather weak or unlikely.


ACS Applied Materials & Interfaces | 2011

Transparent, Luminescent, Antibacterial and Patternable Film Forming Composites of Graphene Oxide/Reduced Graphene Oxide

T. S. Sreeprasad; M. Shihabudheen Maliyekkal; K. Deepti; Kamalesh Chaudhari; P. Lourdu Xavier; T. Pradeep

Multifunctional graphene oxide/reduced graphene oxide (GO/RGO) composites were prepared through electrostatic interaction using biocompatible ingredients. Different functionalities were added to GO/RGO by anchoring materials such as native lactoferrin (NLf), NLf protected Au clusters (designated as Au@NLf), chitosan (Ch) and combinations thereof. Anchoring of Ch and NLf enhances the antibacterial property of RGO/GO. The addition of Ch to RGO/GO not only helped in forming stable dispersions but also helped in fabricating large (cm(2)) area films through a simple solvent evaporation technique. Functionalities such as photoluminescence were added to Ch-RGO/GO composites by anchoring Au@NLf on it. The composites thus formed showed stable luminescence in presence of various metal ions in the solid state. The composite showed reasonable stability against pH and temperature variations as well. The as-prepared films were transparent and the transparency could be modulated by controlling the concentration of RGO/GO in the composite. The antibacterial property and ability to form stable thin films may provide an opportunity to use such composites for medical and environmental remediation applications as well. Erasable patterns were fabricated on the film by stamping required patterns under compressive pressure. Luminescent patterns can be inscribed on the film and can be erased by simply wetting it. Such films with erasable information may be useful for security applications.


Langmuir | 2011

Reversible Assembly and Disassembly of Gold Nanorods Induced by EDTA and Its Application in SERS Tuning

T. S. Sreeprasad; T. Pradeep

A facile and reversible method for assembling and disassembling gold nanorods (GNRs) using a common chelating agent, ethylenediaminetetraacetic acid (EDTA), is reported. Assembly was induced by the electrostatic interaction between the cetyltrimethylammonium bromide (CTAB) bilayer present on GNRs and EDTA. At lower concentrations of EDTA, end-to-end assembled chains were formed. At higher concentrations of EDTA, these chains come together to form sheet-like structures. The complex of CTAB and EDTA, being labile, disassembles in the presence of stronger chelating agents. Upon addition of metal ions having higher formation constants, EDTA detaches from the GNRs and forms stronger complexes with metal ions, resulting in disassembly. Characteristic changes were observed in the UV/vis spectra. Addition of EDTA resulted in a red shift of longitudinal surface plasmon (LSP) resonance at lower concentrations, indicating an end-to-end assembly. At higher concentrations, the characteristic of side-by-side assembly was seen in the UV/vis spectra. TEM analysis proved the existence of end-to-end chains at lower concentrations of EDTA and side-by-side assembled sheet-like structures at higher concentrations. The addition of metal ions induced disassembly. Even 2 ppb of metal ion was detected using the spectral changes. Disassembly was studied in detail, taking Pb(II) as the model system. Upon addition of Pb(II), TSP showed a blue shift and decreased in intensity while the LSP showed a red shift and increased in intensity. A new peak at a higher wavelength region emerged, pointing to the existence of both side-by-side and end-to-end assembly in the system. TEM analysis showed that the disassembly involves the formation of bundled chains which may be the reason for the observed spectral changes. Surface-enhanced Raman scattering (SERS) activity of the system could be tuned by controlling the concentration of EDTA and the metal ion, Pb(II).


Langmuir | 2008

Wires, Plates, Flowers, Needles, and Core−Shells: Diverse Nanostructures of Gold Using Polyaniline Templates

P. R. Sajanlal; T. S. Sreeprasad; and A. Sreekumaran Nair; T. Pradeep

A simple and versatile method for the synthesis of a wide range of polyaniline (PANI)-based 1D and 2D gold nanostructures of uniform size distribution with high colloidal stability is demonstrated. All the nanostructures were synthesized from oligoaniline-coated gold nanoparticle precursors. The nanostructures include nanowires of various sizes, nanoplates, and flower-like nanoparticles. These nanowires showed a pH-dependent shape transformation. Needle-like aggregates of Au/PANI were formed as the pH of the nanowire solution changed to 2.5. At higher pH (10.2), nanowires converted into spherical nanoparticles. Core-shell particles of Au/PANI composites have been achieved by the reversal of the pH of the nanowire from 10.2 to 2.9. The morphology of the nanostructures was studied by TEM and SEM. FTIR, UV-vis, XRD, and LDI MS were utilized for the characterization of the chemical composition of the nanostructures. A mechanism for the nanowire growth is proposed.


Journal of Materials Chemistry | 2009

Size tuning of Au nanoparticles formed by electron beam irradiation of Au25 quantum clusters anchored within and outside of dipeptide nanotubes

Perumal Ramasamy; Samit Guha; E. S. Shibu; T. S. Sreeprasad; Soumabha Bag; Arindam Banerjee; T. Pradeep

Glutathione protected Au25 quantum clusters, exhibiting characteristic fluorescence, have been uniformly coated inside and outside of β-Ala-L-Ile dipeptide nanotubes. These coated structures have been imaged using the inherent fluorescence of Au25. Upon exposure to an electron beam, in a transmission electron microscope, the quantum clusters gradually transform to gold nanoparticles, of the metallic size regime. The nanoparticles grow to a size of 4.5 nm and thereafter the particle size is unaffected by electron beam exposure. The nanotubes are intact and this template is shown to control the uniformity of the size of the nanoparticles grown. The quantum clusters can be loaded selectively inside the tubes using capillarity of the nanotubes. The sizes of the nanoparticles grown are tuned using electron beam exposure.


Journal of Hazardous Materials | 2013

Immobilized graphene-based composite from asphalt: facile synthesis and application in water purification.

T. S. Sreeprasad; Soujit Sen Gupta; Shihabudheen M. Maliyekkal; T. Pradeep

An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm(-1) and 1345 cm(-1) in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated.

Collaboration


Dive into the T. S. Sreeprasad's collaboration.

Top Co-Authors

Avatar

T. Pradeep

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

A. K. Samal

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

Shihabudheen M. Maliyekkal

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

P. R. Sajanlal

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

Akshaya Kumar Samal

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

Soujit Sen Gupta

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

Abhishek Kumar Mishra

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Arindam Banerjee

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Ayyappanpillai Ajayaghosh

National Institute for Interdisciplinary Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chandrabhas Narayana

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge