T. V. Finogenova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. V. Finogenova.
Applied Biochemistry and Microbiology | 2005
T. V. Finogenova; Igor G. Morgunov; Svetlana V. Kamzolova; O. G. Chernyavskaya
The review sums up the results of studies of (1) physiological growth characteristics of the yeast Yarrowia lipolytica cultured in the presence of diverse carbon sources (n-alkanes, glucose, and glycerol) and (2) superhigh synthesis of organic acids, which was performed at the Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences. Microbiological processes of obtaining α-ketoglutaric, pyruvic, isocitric, and citric acids are discussed.
Fems Yeast Research | 2003
Svetlana V. Kamzolova; N. V. Shishkanova; Igor G. Morgunov; T. V. Finogenova
During continuous cultivation of Yarrowia lipolytica N 1, oxygen requirements for growth and citric acid synthesis were found to depend on the iron concentration in the medium. A coupled effect of oxygen and iron concentrations on the functioning of the mitochondrial electron transport chain in Y. lipolytica N 1 was established. Based on the results obtained in continuous culture, conditions for citric acid production in a batch culture of Y. lipolytica N 1 were proposed. At relatively low pO(2) value and a high iron concentration, citric acid accumulation was as high as 120 g l(-1); the specific rate of citric acid synthesis reached 120 mg citric acid (g cells h)(-1). The mass yield coefficient was 0.87 and the energy yield coefficient was 0.31.
Applied Microbiology and Biotechnology | 2000
T. E. Arzumanov; N. V. Shishkanova; T. V. Finogenova
Abstract After analysis of batch culture and identification of the ways for prolongation of citric acid active synthesis by yeast, repeat-batch (RB) cultivation was suggested. Yarrowia lipolytica strain RB cultivation was studied and optimal conditions for cultivation selected. It was shown that when applying RB cultivation, better results were obtained than for batch cultivation. The activity of the culture remained stable after cultivation for more than 700 h. Comparative analysis of enzyme activities confirmed the regularity of the effect described, as the activity of practically of all the enzymes participating in ethanol oxidation and citric acid biosynthesis remained stable over time during RB cultivation. Advantages of RB cultivation for the production of citric acid by yeast are discussed.
Microbiology | 2007
Svetlana V. Kamzolova; T. V. Finogenova; Yu. N. Lunina; O. A. Perevoznikova; L. N. Minachova; Igor G. Morgunov
The native strain Yarrowia lipolytica VKMY-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapesseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.
Applied Microbiology and Biotechnology | 1986
I.T. Ermakova; N.V. Shishkanova; O.F. Melnikova; T. V. Finogenova
SummaryEnzyme activities of the tricarboxylic acid (TCA) cycle and the anaplerotic pathways, as well as the cell cytology of two C. lipolytica mutants with the modified glyoxylate cycle and their parent strain were studied during the exponential growth phase on glucose or hexadecane.Among the TCA cycle enzymes, the key enzyme citrate synthase had the highest activity in all three strains grown on both substrates. NAD-dependent isocitrate dehydrogenase had the minimum activity. All strains had well-developed mitochondria.Pyruvate carboxylation was active in the wild strain and mutant 2 grown on glucose, where this reaction is the basic anaplerotic pathway for oxal-acetate synthesis; mutant 1 had actively functioning enzymes for both anaplerotic pathways — pyruvate carboxylase, isocitrate lyase and malate synthase.During hexadecane assimilation, the number of peroxisomes in all strains increased sharply, accompanied by a simultaneous increase in isocitrate lyase activity.The low activities of both isocitrate lyase and pyruvate carboxylase in mutant 2 give reason to believe that this strain has an additional pathway for oxalacetic acid synthesis during the assimilation of n-alkane.
Enzyme and Microbial Technology | 2000
Tigran E. Arzumanov; Igor Sidorov; Nadezhda V. Shishkanova; T. V. Finogenova
A mathematical model has been created for the process of citric acid biosynthesis by yeast (mutant strain Yarrowia lipolytica) cultivated by the repeated batch (RB) method on ethanol under conditions of nitrogen limitation. The model accounts for cell growth as a function of nitrogen concentration in the culture liquid; nitrogen uptake by growing cells; citric acid production; pH control in the fermentor by means of NaOH addition; and changes in system volume. The model represents a system of five nonlinear differential equations. Experimental measurements of cell concentration, citric acid concentration, and cultivation broth volume were used with the least squares method to determine the values of eight model parameters. The parameter values obtained were consistent with literature data and general concepts of cell growth and citric acid biosynthesis. The model has been used to predict optimum RB culture conditions.
Microbiology | 2003
A. P. Il'chenko; Cherniavskaia Og; N. V. Shishkanova; T. V. Finogenova
A comparative assay of nitrogen metabolism enzymes in the Yarrowia lipolytica mutant N1 grown under conditions promoting the overproduction of either α-ketoglutaric acid (KGA) or citric acid showed that the overproduction of KGA correlates with an increase in the activities of the NAD- and NADP-linked glutamate dehydrogenase, glutamic–pyruvic transaminase, and glutamic–oxaloacetic transaminase reactions. These reactions are likely to be responsible for the overproduction of KGA by this mutant. In contrast, the overproduction of citric acid correlated with a decline in the activities of the NAD- and NADP-linked glutamate dehydrogenases and with an increase in the activities of glutamine synthetase and glutamate synthase.
Microbiology | 2010
A. P. Il'chenko; V. Ya. Lysyanskaya; T. V. Finogenova; Igor G. Morgunov
The study of free amino acid content in Yarrowia lipolytica cells grown on ethanol under thiamine deficiency showed that glutamate, alanine, and γ-aminobutyric acid (γ-ABA) occurred in the highest concentrations among the present 17 free amino acids. The culture liquid contained no amino acids. Analysis of the enzymes of oxidative metabolism in the yeast grown under these conditions showed that the cell-free homogenate contained substantial activity of glutamate decarboxylase, γ-ABA transaminase, and succinyl semialdehyde dehydrogenase. This result indicated the formation of succinate from glutamate in a reaction catalyzed by 4-aminobutyrate aminotransferase (γ-aminobutyrate bypass) under severe thiamine deficiency. These studies lead to the conclusion that cultivation of the yeast Y. lipolytica on ethanol under thiamine deficiency causes adaptive stress-induced metabolic changes. Increase of ammonium nitrogen consumption and excretion of α-ketoglutaric acid are indicative of physiological changes, the functioning of the γ-aminobutyrate bypass and high activity of malate dehydrogenase are manifestations of metabolic changes, and increased activities of the transamination reactions reflect the changes in nitrogen metabolism.
Applied Biochemistry and Microbiology | 2008
T. V. Finogenova; I. F. Puntus; Svetlana V. Kamzolova; Yu. N. Lunina; S. E. Monastyrskaya; Igor G. Morgunov; A. M. Boronin
The possibility of obtaining mutant yeasts Yarrowia lipolytica VKM Y-2373 with increased ability to synthesize citric acid from glucose by using UV irradiation and N-methyl-N’-nitro-N-nitrosoguanidine was studied. Of 1500 colonies of the Y. lipolytica treated with either UV or N-methyl-N’-nitro-N-nitrosoguanidine, three mutants were selected that displayed higher (by 23%) biosynthetic ability as compared with the initial strain. Additionally, three mutants were selected from 1000 colonies of the Y. lipolytica exposed to a combined action of UV and N-methyl-N’-nitro-N-nitrosoguanidine; their biosynthetic activity exceeded that of the initial strain by 43.9%. The selective media with citrate and acetate were developed for a rapid selection of mutants as well as the express methods for the detection of active citric acid producers on the solid media with chalk and bromocresol containing a limiting concentration of amine nitrogen and an excess of glucose.
Microbiology | 2004
Igor G. Morgunov; Svetlana V. Kamzolova; Alexander P. Sokolov; T. V. Finogenova
The NAD+-dependent isocitrate dehydrogenase of the organic acid–producing yeast Yarrowia lipolytica was isolated, purified, and partially characterized. The purification procedure included four steps: ammonium sulfate precipitation, acid precipitation, hydrophobic chromatography, and gel-filtration chromatography. The enzyme was purified 129-fold with a yield of 31% and had a specific activity of 22 U/mg protein. The molecular mass of the enzyme was found to be 412 kDa. The enzyme consists of eight identical subunits with a molecular mass of about 52 kDa. The Km for NAD+ is 136 μM, and that for isocitrate is 581 μM. The effect of some intermediates of the citric acid cycle and nucleotides on the enzyme activity was studied. The role of isocitrate dehydrogenase (NAD+) in the overproduction of citric and keto acids is discussed.