Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadanori Kurosawa is active.

Publication


Featured researches published by Tadanori Kurosawa.


Advanced Materials | 2014

High Performance All-Polymer Solar Cell via Polymer Side-Chain Engineering

Yan Zhou; Tadanori Kurosawa; Wei Ma; Yikun Guo; Lei Fang; Koen Vandewal; Ying Diao; Chenggong Wang; Qifan Yan; Julia Reinspach; Jianguo Mei; Anthony L. Appleton; Ghada I. Koleilat; Yongli Gao; Stefan C. B. Mannsfeld; Alberto Salleo; Harald Ade; Dahui Zhao; Zhenan Bao

Acknowledge support from the Office of Naval Research (N00014-14-1-0142), KAUST Center for Advanced Molecular Photovoltaics at Stanford and the Stanford Global Climate and Energy Program, NSF DMR-1303742 and the National Natural Science Foundation of China (Projects 21174004 and 21222403). Soft X-ray characterization and analysis by NCSU supported by the U.S. Department of Energy, Office of Science, Basic Energy Science, Division of Materials Science and Engineering under Contract DE-FG02-98ER45737. Soft X-ray data was acquired at beamlines 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Professor Michael D. McGehee, Dr. George F. Burkhard and Dr. Eric T. Hoke for their help in discussion of the recombination mechanism.


Nature | 2016

Intrinsically stretchable and healable semiconducting polymer for organic transistors

Jin Young Oh; Simon Rondeau-Gagné; Yu-Cheng Chiu; Alex Chortos; Franziska Lissel; Ging-Ji Nathan Wang; Bob C. Schroeder; Tadanori Kurosawa; Jeffrey Lopez; Toru Katsumata; Jie Xu; Chenxin Zhu; Xiaodan Gu; Won-Gyu Bae; Yeongin Kim; Lihua Jin; Jong Won Chung; Jeffrey B.-H. Tok; Zhenan Bao

Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.


Nature Communications | 2015

A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

Ho-Hsiu Chou; Amanda Nguyen; Alex Chortos; John W. F. To; Chien Lu; Jianguo Mei; Tadanori Kurosawa; Won-Gyu Bae; Jeffrey B.-H. Tok; Zhenan Bao

Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skins colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.


Polymer Chemistry | 2013

Polyimide memory: a pithy guideline for future applications

Tadanori Kurosawa; Tomoya Higashihara; Mitsuru Ueda

Polymeric materials for use in memory devices have attracted significant scientific interest due to their several advantages, such as low cost, solution processability, high mechanical strength, and possible development of three-dimensional stacking devices. Taking into account the heat resistance for the device fabrication process, polyimides (PIs) are one of the most attractive polymers for memory applications due to their high thermal stability and mechanical strength. In recent years, a large number of studies have revealed that almost all kinds of memory properties from volatile to non-volatile memory can be produced by optimizing the chemical structure of the PIs. Several mechanisms have been discussed in order to explain the switching properties. Among them, two major theories, field induced charge transfer (CT) and filament formation, are thought to explain the phenomena in the PI system. In this article, recent studies of functional polyimides (PIs) for memory applications are reviewed, mostly focusing on the mechanism underlying the switching phenomena. In addition, some progress in the fabrication process for developing high density storage will also be reviewed.


Advanced Materials | 2015

Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for In Vivo Photoacoustic Imaging.

Kanyi Pu; Jianguo Mei; Jesse V. Jokerst; Guosong Hong; Alexander L. Antaris; Niladri Chattopadhyay; Adam J. Shuhendler; Tadanori Kurosawa; Yan Zhou; Sanjiv S. Gambhir; Zhenan Bao; Jianghong Rao

Diketopyrrolopyrrole-based semiconducting polymer nanoparticles with high photostability and strong photoacoustic brightness are designed and synthesized, which results in 5.3-fold photoacoustic signal enhancement in tumor xenografts after systemic administration.


Journal of the American Chemical Society | 2016

Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor

John W. F. To; Jiajun He; Jianguo Mei; Reza Haghpanah; Zheng Chen; Tadanori Kurosawa; Shucheng Chen; Won-Gyu Bae; Lijia Pan; Jeffrey B.-H. Tok; Jennifer Wilcox; Zhenan Bao

Carbon capture and sequestration from point sources is an important component in the CO2 emission mitigation portfolio. In particular, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. Here, we report the controlled synthesis of a novel N-doped hierarchical carbon that exhibits record-high Henrys law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, our synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultrasmall pores (d < 0.5 nm) and preservation of nitrogen moieties, essential for enhanced CO2 affinity. Furthermore, our described work provides a strategy to initiate developments of rationally designed porous conjugated polymer structures and carbon-based materials for various potential applications.


Nature Communications | 2015

Flow-enhanced solution printing of all-polymer solar cells.

Ying Diao; Yan Zhou; Tadanori Kurosawa; Leo Shaw; Cheng Wang; Steve Park; Yikun Guo; Julia Reinspach; Kevin L. Gu; Xiaodan Gu; Benjamin C.-K. Tee; Changhyun Pang; Hongping Yan; Dahui Zhao; Michael F. Toney; Stefan C. B. Mannsfeld; Zhenan Bao

Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.


Journal of Materials Chemistry | 2012

Flexible polymer memory devices derived from triphenylamine–pyrene containing donor–acceptor polyimides

An-Dih Yu; Tadanori Kurosawa; Yi-Cang Lai; Tomoya Higashihara; Mitsuru Ueda; Cheng-Liang Liu; Wen-Chang Chen

Organic polymer based electrical memory devices have attracted significant scientific interest for flexible electronics. However, molecular design principles of polymers with specified memory characteristics on flexible substrates remain challenges. Herein we developed new triphenylamine–pyrene containing donor–acceptor polyimides (PIs) on flexible poly(ethylene naphthalate) (PEN)/Al/PIs/Al cross-point devices, which showed the memory characteristics changing from volatile to nonvolatile via the relative copolymer ratio. The PIs were prepared from the diamines 4,4′-diamino-4′′-methyltriphenylamine (AMTPA) or N,N-bis(4-aminophenyl)aminopyrene (APAP) and the dianhydride 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), with relative AMTPA/APAP molar compositions of 100/0, 95/5, 90/10 and 0/100. As the APAP content increased, the memory device characteristics changed from volatile to nonvolatile behavior of flash and write once read many (WORM), since the pyrene moiety could stabilize the radical cation of the APAP moieties. The threshold voltage, ON/OFF ratio, and retention ability were within −3 V, more than 104, and 104 s, respectively. Additionally, the endurance and bending cyclic measurements confirmed that the flexible PI memory devices exhibited excellent reliability and mechanical stability. A possible switching mechanism based on the charge transfer interaction was proposed through molecular simulation and fitted with physical conduction models in OFF and ON states. The manipulation of the memory volatility through tailoring the molecular design and plastic electronic devices demonstrated promising applications of donor–acceptor PIs in integrated memory devices.


Chemistry-an Asian Journal | 2013

Donor–Acceptor Oligoimides for Application in High-Performance Electrical Memory Devices

Yi-Cang Lai; Tadanori Kurosawa; Tomoya Higashihara; Mitsuru Ueda; Wen-Chang Chen

Two new oligoimides, OI(APAP-6FDA) and OI(APAN-6FDA), which consisted of electron-donating N-(4-aminophenyl)-N-phenyl-1-aminopyrene (APAP) or N-(4-aminophenyl)-N-phenyl-1-aminonaphthalene (APAN) moieties and electron-accepting 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) moieties, were designed and synthesized for application in electrical memory devices. Such devices, with the indium tin oxide (ITO)/oligoimide/Al configuration, showed memory characteristics, from high-conductance Ohmic current flow to negative differential resistance (NDR), with corresponding film thicknesses of 38 and 48 nm, respectively. The 48 nm oligoimide film device exhibited NDR electrical behavior, which resulted from the diffusion of Al atoms into the oligoimide layer. On further increasing the film thickness to 85 nm, the OI(APAP-6FDA) film device showed a reproducible nonvolatile “write once read many” (WORM) property with a high ON/OFF current ratio (more than ×10(4)). On the other hand, the device that was based on the 85 nm OI(APAN-6FDA) film exhibited a volatile static random access memory (SRAM) property. The longer conjugation length of the pyrene unit compared to that of a naphthalene unit was considered to be responsible for the different memory characteristics between these two oligoimides. These experimental results suggested that tunable switching behavior could be achieved through an appropriate design of the donor–acceptor oligoimide structure and controllable thickness of the active memory layer.


Archive | 2015

CHAPTER 2:Organic Resistor Memory Devices

Tadanori Kurosawa; Tomoya Higashihara; Mitsuru Ueda

In recent years, increasing attention has been paid to application of resistor memory devices based on organic materials. They have been developed and studied because of several advantages, such as their low cost fabrication, flexible device structure, three-dimensional stacking capability, the possibility of modulating their properties through molecular design and chemical synthesis, etc. In this chapter, an overview of the development of resistor memory based on organic and polymeric materials is given in five sections covering the basics of resistor memory devices, materials, and a discussion of their underlying switching mechanisms. In addition, some of the recent studies on the applications of resistor memory devices will be presented in the final section.

Collaboration


Dive into the Tadanori Kurosawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen-Chang Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongping Yan

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael F. Toney

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Wang

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge