Tae Gen Son
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tae Gen Son.
Neuromolecular Medicine | 2008
Tae Gen Son; Simonetta Camandola; Mark P. Mattson
Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer’s and Parkinson’s diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as ‘preconditioning’ or ‘hormesis.’ Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin–FOXO pathway, the NF-κB pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals.
Journal of Biological Chemistry | 2008
So Jung Kim; Tae Gen Son; Hee Ra Park; Mi-Kyung Park; Min-Sun Kim; Hyung Sik Kim; Hae Young Chung; Mark P. Mattson; Jaewon Lee
Curcumin is a natural phenolic component of yellow curry spice, which is used in some cultures for the treatment of diseases associated with oxidative stress and inflammation. Curcumin has been reported to be capable of preventing the death of neurons in animal models of neurodegenerative disorders, but its possible effects on developmental and adult neuroplasticity are unknown. In the present study, we investigated the effects of curcumin on mouse multi-potent neural progenitor cells (NPC) and adult hippocampal neurogenesis. Curcumin exerted biphasic effects on cultured NPC; low concentrations stimulated cell proliferation, whereas high concentrations were cytotoxic. Curcumin activated extracellular signal-regulated kinases (ERKs) and p38 kinases, cellular signal transduction pathways known to be involved in the regulation of neuronal plasticity and stress responses. Inhibitors of ERKs and p38 kinases effectively blocked the mitogenic effect of curcumin in NPC. Administration of curcumin to adult mice resulted in a significant increase in the number of newly generated cells in the dentate gyrus of hippocampus, indicating that curcumin enhances adult hippocampal neurogenesis. Our findings suggest that curcumin can stimulate developmental and adult hippocampal neurogenesis, and a biological activity that may enhance neural plasticity and repair.
Nature Communications | 2012
Aiwu Cheng; Ruiqian Wan; Jenq Lin Yang; Naomi Kamimura; Tae Gen Son; Xin Ouyang; Yongquan Luo; Eitan Okun; Mark P. Mattson
The formation, maintenance and reorganization of synapses are critical for brain development and the responses of neuronal circuits to environmental challenges. Here we describe a novel role for peroxisome proliferator-activated receptor γ co-activator 1α, a master regulator of mitochondrial biogenesis, in the formation and maintenance of dendritic spines in hippocampal neurons. In cultured hippocampal neurons, proliferator-activated receptor γ co-activator 1α overexpression increases dendritic spines and enhances the molecular differentiation of synapses, whereas knockdown of proliferator-activated receptor γ co-activator 1α inhibits spinogenesis and synaptogenesis. Proliferator-activated receptor γ co-activator 1α knockdown also reduces the density of dendritic spines in hippocampal dentate granule neurons in vivo. We further show that brain-derived neurotrophic factor stimulates proliferator-activated receptor γ co-activator-1α-dependent mitochondrial biogenesis by activating extracellular signal-regulated kinases and cyclic AMP response element-binding protein. Proliferator-activated receptor γ co-activator-1α knockdown inhibits brain-derived neurotrophic factor-induced dendritic spine formation without affecting expression and activation of the brain-derived neurotrophic factor receptor tyrosine receptor kinase B. Our findings suggest that proliferator-activated receptor γ co-activator-1α and mitochondrial biogenesis have important roles in the formation and maintenance of hippocampal dendritic spines and synapses.
Journal of Neurochemistry | 2010
Tae Gen Son; Simonetta Camandola; Thiruma V. Arumugam; Roy G. Cutler; Richard Telljohann; Mohamed R. Mughal; Tyson A. Moore; Weiming Luo; Qian Sheng Yu; Delinda A. Johnson; Jeffrey A. Johnson; Mark P. Mattson
J. Neurochem. (2010) 112, 1316–1326.
PLOS ONE | 2007
Srinivasulu Chigurupati; Thiruma V. Arumugam; Tae Gen Son; Justin D. Lathia; Shafaq Jameel; Mohamed R. Mughal; Sung-Chun Tang; Dong Gyu Jo; Simonetta Camandola; Marialuisa Giunta; Irina Rakova; Nazli B. McDonnell; Lucio Miele; Mark P. Mattson; Suresh Poosala
The Notch signaling pathway is critically involved in cell fate decisions during development of many tissues and organs. In the present study we employed in vivo and cell culture models to elucidate the role of Notch signaling in wound healing. The healing of full-thickness dermal wounds was significantly delayed in Notch antisense transgenic mice and in normal mice treated with γ-secretase inhibitors that block proteolytic cleavage and activation of Notch. In contrast, mice treated with a Notch ligand Jagged peptide showed significantly enhanced wound healing compared to controls. Activation or inhibition of Notch signaling altered the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in a scratch wound healing model in ways consistent with roles for Notch signaling in wound healing functions all three cell types. These results suggest that Notch signaling plays important roles in wound healing and tissue repair, and that targeting the Notch pathway might provide a novel strategy for treatment of wounds and for modulation of angiogenesis in other pathological conditions.
Dose-response | 2007
Mark P. Mattson; Tae Gen Son; Simonetta Camandola
The nervous system is of fundamental importance in the adaptive (hormesis) responses of organisms to all types of stress, including environmental “toxins”. Phytochemicals present in vegetables and fruits are believed to reduce the risk of several major diseases including cardiovascular disease, cancers and neurodegenerative disorders. Although antioxidant properties have been suggested as the basis of health benefits of phytochemicals, emerging findings suggest a quite different mechanism of action. Many phytochemicals normally function as toxins that protect the plants against insects and other damaging organisms. However, at the relatively low doses consumed by humans and other mammals these same “toxic” phytochemicals activate adaptive cellular stress response pathways that can protect the cells against a variety of adverse conditions. Recent findings have elucidated hormetic mechanisms of action of phytochemicals (e.g., resveratrol, curcumin, sulforaphanes and catechins) using cell culture and animal models of neurological disorders. Examples of hormesis pathways activated by phytochemicals include the transcription factor Nrf-2 which activates genes controlled by the antioxidant response element, and histone deacetylases of the sirtuin family and FOXO transcription factors. Such hormetic pathways stimulate the production of antioxidant enzymes, protein chaperones and neurotrophic factors. In several cases neurohormetic phytochemicals have been shown to suppress the disease process in animal models relevant to neurodegenerative disorders such as Alzheimers and Parkinsons diseaess, and can also improve outcome following a stroke. We are currently screening a panel of biopesticides in order to establish hormetic doses, neuroprotective efficacy, mechanisms of action and therapeutic potential as dietary supplements.
Neurochemical Research | 2007
So Jung Kim; Tae Gen Son; Keunho Kim; Hee Ra Park; Mark P. Mattson; Jaewon Lee
It has been reported that interferon-γ (IFN-γ) facilitates differentiation of PC-12 cells and murine adult neural stem cells. Here we show that IFN-γ promotes the differentiation of C17.2 neural progenitor cells (NPC) into a neuronal phenotype characterized by neurite outgrowth and the expression of the neuronal marker protein β-III tubulin. IFN-γ induced an increase in the activity c-jun N-terminal kinase (JNK) without affecting activities of extracellular signal-regulated kinases (ERKs 1 and 2). An inhibitor of JNK blocked the ability of IFN-γ to promote differentiation of NPC into neurons, whereas an inhibitor of ERKs 1 and 2 did not. Our findings show that the pro-inflammatory cytokine, IFN-γ has the potential to stimulate neurogenesis, suggesting roles for this cytokine in development and repair of the nervous system.
Mechanisms of Ageing and Development | 2006
Tae Gen Son; Yani Zou; Kyung Jin Jung; Byung Pal Yu; Akihito Ishigami; Naoki Maruyama; Jaewon Lee
Senescence marker protein 30 (SMP30), an important aging marker molecule, has been identified functionally as a calcium regulatory protein. Recent evidence showed its new assumed role as an effective anti-oxidative property. However, the role of SMP30 in the brain has not been explored. To delineate its role in the brain, we utilized SMP30 knock-out (SMP30 KO) mice in the current study. We focused on the oxidative status of the brain by examining selected oxidative markers in brains of SMP30 KO mice. Results showed that the generation of reactive species (RS) and NADPH oxidase activities were significantly elevated in SMP30 deficient brain. The increased oxidative status in these mice was further confirmed by increased oxidatively modified proteins such as dityrosine formation and carbonylation in the cortex of SMP30 KO mice. Moreover, SMP30 deficient brain showed the increased Mac-1 protein and myeloperoxidase (MPO) activity in the brain, supporting the putative anti-oxidative action of SMP30. Interestingly, the activities of major antioxidant enzymes, superoxide dismutase, catalase and reduced glutathione peroxidase in the brain were not affected by SMP30 depletion. Our results documented that brain SMP30 has a protective action against oxidative damage, without influencing antioxidant enzyme status.
Journal of Neurochemistry | 2010
Eitan Okun; Kathleen J. Griffioen; Tae Gen Son; Jong Hwan Lee; Nicholas J. Roberts; Mohamed R. Mughal; Emmette R. Hutchison; Aiwu Cheng; Thiruma V. Arumugam; Justin D. Lathia; Henriette van Praag; Mark P. Mattson
J. Neurochem. (2010) 114, 462–474.
Journal of Endocrinology | 2008
Srinivasulu Chigurupati; Tae Gen Son; Dong Hoon Hyun; Justin D. Lathia; Mohamed R. Mughal; Jason Savell; Shuan C. Li; Ganji Purnachandra Nagaraju; Sic L. Chan; Thiruma V. Arumugam; Mark P. Mattson
Regular exercise can counteract the adverse effects of aging on the musculoskeletal and cardiovascular systems. In males, the normal aging process is associated with reductions in testosterone production and impaired spermatogenesis, but the underlying mechanisms and their potential modification by exercise are unknown. Here, we report that lifelong regular exercise (running) protects the testes against the adverse effects of advancing age, and that this effect of running is associated with decreased amounts of oxidative damage to proteins, lipids, and DNA in spermatogenic and Leydig cells. Six-month-old male mice were divided into a sedentary group and a group that ran an average of 1.75 km/day, until the mice reached the age of 20 months. Seminiferous tubules of runners exhibited a full complement of cells at different stages of the spermatogenic process and a clear central lumen with large numbers of spermatozoa, in contrast to sedentary mice that exhibited disorganized spermatogenic cells and lacked spermatocytes in a central lumen. Levels of protein carbonyls, nitrotyrosine, lipid peroxidation products, and oxidatively modified DNA were significantly greater in spermatogenic and Leydig cells of sedentary mice compared with runners. These findings suggest that lifelong regular exercise suppresses aging of testes by a mechanism that involves reduced oxidative damage to spermatogenic and Leydig cells.