Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tahir H. Tahirov is active.

Publication


Featured researches published by Tahir H. Tahirov.


Nature | 2007

Structural basis for transcription elongation by bacterial RNA polymerase.

Dmitry G. Vassylyev; Marina N. Vassylyeva; Anna Perederina; Tahir H. Tahirov; Irina Artsimovitch

The RNA polymerase elongation complex (EC) is both highly stable and processive, rapidly extending RNA chains for thousands of nucleotides. Understanding the mechanisms of elongation and its regulation requires detailed information about the structural organization of the EC. Here we report the 2.5-Å resolution structure of the Thermus thermophilus EC; the structure reveals the post-translocated intermediate with the DNA template in the active site available for pairing with the substrate. DNA strand separation occurs one position downstream of the active site, implying that only one substrate at a time can specifically bind to the EC. The upstream edge of the RNA/DNA hybrid stacks on the β′-subunit ‘lid’ loop, whereas the first displaced RNA base is trapped within a protein pocket, suggesting a mechanism for RNA displacement. The RNA is threaded through the RNA exit channel, where it adopts a conformation mimicking that of a single strand within a double helix, providing insight into a mechanism for hairpin-dependent pausing and termination.


Cell | 2004

Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription

Anna Perederina; Vladimir Svetlov; Marina N. Vassylyeva; Tahir H. Tahirov; Shigeyuki Yokoyama; Irina Artsimovitch; Dmitry G. Vassylyev

Bacterial transcription is regulated by the alarmone ppGpp, which binds near the catalytic site of RNA polymerase (RNAP) and modulates its activity. We show that the DksA protein is a crucial component of ppGpp-dependent regulation. The 2.0 A resolution structure of Escherichia coli DksA reveals a globular domain and a coiled coil with two highly conserved Asp residues at its tip that is reminiscent of the transcript cleavage factor GreA. This structural similarity suggests that DksA coiled coil protrudes into the RNAP secondary channel to coordinate a ppGpp bound Mg2+ ion with the Asp residues, thereby stabilizing the ppGpp-RNAP complex. Biochemical analysis demonstrates that DksA affects transcript elongation, albeit differently from GreA; augments ppGpp effects on initiation; and binds directly to RNAP, positioning the Asp residues near the active site. Substitution of these residues eliminates the synergy between DksA and ppGpp. Thus, the secondary channel emerges as a common regulatory entrance for transcription factors.


Nature | 2010

Crystal structure of HIV-1 Tat complexed with human P-TEFb

Tahir H. Tahirov; Nigar D. Babayeva; Katayoun Varzavand; Jeffrey J. Cooper; Stanley C. Sedore; David H. Price

Regulation of the expression of the human immunodeficiency virus (HIV) genome is accomplished in large part by controlling transcription elongation. The viral protein Tat hijacks the host cell’s RNA polymerase II elongation control machinery through interaction with the positive transcription elongation factor, P-TEFb, and directs the factor to promote productive elongation of HIV mRNA. Here we describe the crystal structure of the Tat·P-TEFb complex containing HIV-1 Tat, human Cdk9 (also known as CDK9), and human cyclin T1 (also known as CCNT1). Tat adopts a structure complementary to the surface of P-TEFb and makes extensive contacts, mainly with the cyclin T1 subunit of P-TEFb, but also with the T-loop of the Cdk9 subunit. The structure provides a plausible explanation for the tolerance of Tat to sequence variations at certain sites. Importantly, Tat induces significant conformational changes in P-TEFb. This finding lays a foundation for the design of compounds that would specifically inhibit the Tat·P-TEFb complex and block HIV replication.


Nature | 2002

Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution.

Tahir H. Tahirov; Dmitry Temiakov; Michael Anikin; Vsevolod Patlan; William T. McAllister; Dmitry G. Vassylyev; Shigeyuki Yokoyama

The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA–DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130° rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA–DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.


Cell | 2002

Mechanism of c-Myb–C/EBPβ Cooperation from Separated Sites on a Promoter

Tahir H. Tahirov; Ko Sato; Emi Ichikawa-Iwata; Motoko Sasaki; Taiko Inoue-Bungo; Masaaki Shiina; Kazumi Kimura; Shioka Takata; Atsushi Fujikawa; Hisayuki Morii; Takashi Kumasaka; Masaki Yamamoto; Shunsuke Ishii; Kazuhiro Ogata

c-Myb, but not avian myeloblastosis virus (AMV) v-Myb, cooperates with C/EBPβ to regulate transcription of myeloid-specific genes. To assess the structural basis for that difference, we determined the crystal structures of complexes comprised of the c-Myb or AMV v-Myb DNA-binding domain (DBD), the C/EBPβ DBD, and a promoter DNA fragment. Within the c-Myb complex, a DNA-bound C/EBPβ interacts with R2 of c-Myb bound to a different DNA fragment; point mutations in v-Myb R2 eliminate such interaction within the v-Myb complex. GST pull-down assays, luciferase trans-activation assays, and atomic force microscopy confirmed that the interaction of c-Myb and C/EBPβ observed in crystal mimics their long range interaction on the promoter, which is accompanied by intervening DNA looping.


Cell | 2005

Allosteric Modulation of the RNA Polymerase Catalytic Reaction Is an Essential Component of Transcription Control by Rifamycins

Irina Artsimovitch; Marina N. Vassylyeva; Dmitri Svetlov; Vladimir Svetlov; Anna Perederina; Noriyuki Igarashi; Naohiro Matsugaki; Soichi Wakatsuki; Tahir H. Tahirov; Dmitry G. Vassylyev

Rifamycins, the clinically important antibiotics, target bacterial RNA polymerase (RNAP). A proposed mechanism in which rifamycins sterically block the extension of nascent RNA beyond three nucleotides does not alone explain why certain RNAP mutations confer resistance to some but not other rifamycins. Here we show that unlike rifampicin and rifapentin, and contradictory to the steric model, rifabutin inhibits formation of the first and second phosphodiester bonds. We report 2.5 A resolution structures of rifabutin and rifapentin complexed with the Thermus thermophilus RNAP holoenzyme. The structures reveal functionally important distinct interactions of antibiotics with the initiation sigma factor. Strikingly, both complexes lack the catalytic Mg2+ ion observed in the apo-holoenzyme, whereas an increase in Mg2+ concentration confers resistance to rifamycins. We propose that a rifamycin-induced signal is transmitted over approximately 19 A to the RNAP active site to slow down catalysis. Based on structural predictions, we designed enzyme substitutions that apparently interrupt this allosteric signal.


Current Opinion in Structural Biology | 2003

Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar.

Kazuhiro Ogata; Ko Sato; Tahir H. Tahirov

It is characteristic of eukaryotic transcription that a unique combination of multiple transcriptional regulatory proteins bound to promoter DNA specifically activate or repress downstream target genes; this is referred to as combinatorial gene regulation. Recently determined structures have revealed different modes of protein-protein interaction on the promoter DNA from near (e.g. the Runx1-CBFbeta-DNA, NFAT-Fos-Jun-DNA, GABPalpha-GABPbeta-DNA, Ets-1-Pax-5-DNA and PU.1-IRF-4-DNA complexes) and afar with DNA looping (e.g. the c-Myb-C/EBPbeta-DNA complex), and their regulatory mechanisms.


Journal of Biological Chemistry | 2012

DNA Polymerase δ and ζ Switch by Sharing Accessory Subunits of DNA Polymerase δ

Andrey G. Baranovskiy; Artem G. Lada; Hollie M. Siebler; Yinbo Zhang; Youri I. Pavlov; Tahir H. Tahirov

Background: DNA polymerase (Pol) δ is involved in UV light-induced mutagenesis by an unknown mechanism. Results: The C terminus of DNA Pol ζ interacts with accessory subunits of DNA Pol δ, which is required for UV light-induced mutagenesis. Conclusion: When replication is stalled, accessory subunits of DNA Pol δ participate in recruitment of translesion DNA Pol ζ. Significance: This finding provides a novel mechanism of DNA lesion bypass in eukaryotes. Translesion DNA synthesis is an important branch of the DNA damage tolerance pathway that assures genomic integrity of living organisms. The mechanisms of DNA polymerase (Pol) switches during lesion bypass are not known. Here, we show that the C-terminal domain of the Pol ζ catalytic subunit interacts with accessory subunits of replicative DNA Pol δ. We also show that, unlike other members of the human B-family of DNA polymerases, the highly conserved and similar C-terminal domains of Pol δ and Pol ζ contain a [4Fe-4S] cluster coordinated by four cysteines. Amino acid changes in Pol ζ that prevent the assembly of the [4Fe-4S] cluster abrogate Pol ζ function in UV mutagenesis. On the basis of these data, we propose that Pol switches at replication-blocking lesions occur by the exchange of the Pol δ and Pol ζ catalytic subunits on a preassembled complex of accessory proteins retained on DNA during translesion DNA synthesis.


Cell Cycle | 2008

X-ray structure of the complex of regulatory subunits of human DNA polymerase delta.

Andrey G. Baranovskiy; Nigar D. Babayeva; Victoria G. Liston; Igor B. Rogozin; Eugene V. Koonin; Youri I. Pavlov; Dmitry G. Vassylyev; Tahir H. Tahirov

The eukaryotic DNA polymerase delta (Pol delta) participates in genome replication, homologous recombination, DNA repair and damage tolerance. Regulation of the plethora of Pol delta functions depends on the interaction between the second (p50) and third (p66) non-catalytic subunits. We report the crystal structure of p50p66N complex featuring oligonucleotide binding and phosphodiesterase domains in p50 and winged helix-turn-helix N-terminal domain in p66. Disruption of the interaction between the yeast orthologs of p50 and p66 by strategic amino acid changes leads to cold-sensitivity, sensitivity to hydroxyurea and to reduced UV mutagenesis, mimicking the phenotypes of strains where the third subunit of Pol delta is absent. The second subunits of all B-family replicative DNA polymerases in archaea and eukaryotes, except Pol delta, share a three-domain structure similar to p50p66N, raising the possibility that a portion of the gene encoding p66 was derived from the second subunit gene relatively late in evolution.


Nucleic Acids Research | 2014

Structural basis for inhibition of DNA replication by aphidicolin

Andrey G. Baranovskiy; Nigar D. Babayeva; Yoshiaki Suwa; Jianyou Gu; Youri I. Pavlov; Tahir H. Tahirov

Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with an RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.

Collaboration


Dive into the Tahir H. Tahirov's collaboration.

Top Co-Authors

Avatar

Andrey G. Baranovskiy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nigar D. Babayeva

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Youri I. Pavlov

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dmitry G. Vassylyev

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yinbo Zhang

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jianyou Gu

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Yoshiaki Suwa

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Marina N. Vassylyeva

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge