Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taishi Miyashita is active.

Publication


Featured researches published by Taishi Miyashita.


Drug Metabolism and Disposition | 2013

Evaluation and Mechanistic Analysis of the Cytotoxicity of the Acyl Glucuronide of Nonsteroidal Anti-Inflammatory Drugs

Taishi Miyashita; Kento Kimura; Tatsuki Fukami; Miki Nakajima; Tsuyoshi Yokoi

The chemical reactivity of acyl glucuronide (AG) has been thought to be associated with the toxic properties of drugs containing carboxylic acid moieties, but there has been no direct evidence showing that AG formation is related to the observed toxicity. In the present study, the cytotoxicity of AGs, especially that associated with the inflammatory response, was investigated. The changes in the mRNA and protein expression levels of interleukin 8 (IL-8) and monocyte chemoattractant protein (MCP)-1 induced by the treatment of human peripheral blood mononuclear cells (PBMCs) with diclofenac (Dic), probenecid (Pro), tolmetin (Tol), ibuprofen (Ibu), naproxen (Nap), and their AGs were investigated by real-time reverse transcription polymerase chain reaction, and the viabilities of CD3+, CD14+, and CD19+ cells were measured by flow cytometry. Treatment with Dic-AG, Pro-AG, and Tol-AG significantly increased the expression levels of IL-8 and MCP-1. In addition, Dic-AG, Pro-AG, and Tol-AG significantly decreased the viability of CD14+ cells. Of these three AGs, Dic-AG showed the most potent changes, followed by Tol-AG and Pro-AG. Treatment with Ibu-AG and Nap-AG affected neither the expression levels of IL-8 and MCP-1 nor the viability of CD14+ cells. None of the drugs affected the CD3+ and CD19+ cell populations. Dic-AG increased the phosphorylation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2. The pretreatment of peripheral blood mononuclear cells (PBMCs) with SB203580 (p38 inhibitor) significantly suppressed the Dic-AG-induced expression of inflammatory factors and cytotoxicity of CD14+ cells. In conclusion, AGs induce inflammatory responses and cytotoxicity against CD14+ cells via the p38 MAPK pathway. These factors may be useful biomarkers for evaluating the toxicity of AGs.


Toxicology Letters | 2011

Estradiol and progesterone modulate halothane-induced liver injury in mice.

Yasuyuki Toyoda; Taishi Miyashita; Shinya Endo; Koichi Tsuneyama; Tatsuki Fukami; Miki Nakajima; Tsuyoshi Yokoi

Drug-induced liver injury (DILI) is one of the major problems in drug development and clinical drug therapy. In general, it is believed that women exhibit worse outcomes from DILI than men. It is known that halothane (HAL), an inhaled anesthetic, rarely induces severe liver injury. The risk factors for severe HAL-induced liver injury (HILI) are female sex, genetics and adult age. To investigate the underlying mechanism by which women are more susceptible to HILI, we focused on two major female sex hormones, estradiol (E2) and progesterone (Prog). In this study, we first found that pretreatment of mice with E2 attenuated HILI, whereas pretreatment with Prog exacerbated HILI. E2 and Prog had no effects on the degree of metabolic activation, the ratio of GSH/GSSG or oxidative stress in the liver. We observed higher numbers of neutrophils infiltrated into the liver and increased hepatic mRNA levels of proinflammatory cytokines, tumor necrosis factor (TNF) α, interleukin (IL)-1β and IL-6 and chemokines, CXCL1 and CXCL2 by pretreatment with Prog, whereas E2 pretreatment resulted in the opposite effects. These results suggest that E2 and Prog play a critical role in HILI via immune-related responses and female sex hormone balance might represent a risk factor for HILI.


Toxicology and Applied Pharmacology | 2012

Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

Yukitaka Yoshikawa; Taishi Miyashita; Satonori Higuchi; Koichi Tsuneyama; Shinya Endo; Tohru Tsukui; Yasuyuki Toyoda; Tatsuki Fukami; Miki Nakajima; Tsuyoshi Yokoi

Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia-reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs.


Toxicological Sciences | 2012

Mechanism of exacerbative effect of progesterone on drug-induced liver injury

Yasuyuki Toyoda; Shinya Endo; Koichi Tsuneyama; Taishi Miyashita; Azusa Yano; Tatsuki Fukami; Miki Nakajima; Tsuyoshi Yokoi

Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is generally believed that women exhibit worse outcomes from DILI than men. Recently, we found that pretreatment of mice with estradiol attenuated halothane (HAL)-induced liver injury, whereas pretreatment with progesterone exacerbated it in female mice. To investigate the mechanism of sex difference of DILI, we focused on progesterone in this study. We found the exacerbating effect of progesterone in thioacetamide (TA), α-naphthylisothiocyanate, and dicloxacillin-induced liver injury only in female mice. Higher number of myeloperoxidase-positive mononuclear cells infiltrated into the liver and increased levels of Chemokine (C-X-C motif) ligand 1 and 2 (CXCL1 and CXCL2) and intercellular adhesion molecule-1 in the liver were observed. Interestingly, CXCL1 was slightly increased by progesterone pretreatment alone. Progesterone pretreatment increased the extracellular signal-regulated kinase (ERK) phosphorylation in HAL-induced liver injury. Pretreatment with U0126 (ERK inhibitor) significantly suppressed the exacerbating effect of progesterone and the expression of inflammatory mediators. In addition, pretreatment with gadolinium chloride (GdCl(3): inhibitor of Kupffer cells) significantly suppressed the exacerbating effect of progesterone pretreatment and the expression of inflammatory mediators. Moreover, posttreatment of RU486 (progesterone receptor antagonist) 1 h after the HAL or TA administration ameliorated the HAL- or TA-induced liver injury, respectively, in female mice. In conclusion, progesterone exacerbated the immune-mediated hepatotoxic responses in DILI via Kupffer cells and ERK pathway. The inhibition of progesterone receptor and decrease of the immune response may have important therapeutic implications in DILI.


Journal of Toxicological Sciences | 2015

Evaluation of skin phototoxicity study using SD rats by transdermal and oral administration

Yutaka Yonezawa; Tomoka Ohsumi; Taishi Miyashita; Akira Kataoka; Kazuto Hashimoto; Hiroaki Nejishima; Haruko Ogawa

Guinea pigs are the most frequently used animals in phototoxicity studies. However, general toxicity studies most often use Sprague-Dawley (SD) rats. To reduce the number of animals needed for drug development, we examined whether skin phototoxicity studies could be performed using SD rats. A total of 19 drugs that had previously been shown to have phototoxic potential and 3 known phototoxic compounds were administered transdermally to guinea pigs and SD rats. Eleven of the potentially phototoxic drugs and 2 of the known phototoxic compounds were also administered orally to guinea pigs and SD rats. After administration, the animals were irradiated with UV-A (10 J/cm(2)) and UV-B (0.25 J/cm(2) in guinea pigs and 0.031 J/cm(2) in SD rats) with doses based on standard phototoxicity study guidelines and the results of a minimum erythema dose test, respectively. In the transdermal administration study, all of the known phototoxic compounds and 7 of the drugs induced phototoxic reactions. In the oral administration study, both known phototoxic compounds and 5 drugs induced phototoxic reactions in both species; one compound each was found to be toxic only in SD rats or guinea pigs. The concordance rate of guinea pigs and SD rats was 100% in the transdermal administration study and 85% in the oral administration study. This study demonstrated that phototoxicity studies using SD rats have the same potential to detect phototoxic compounds as studies using guinea pigs.


Journal of Toxicological Sciences | 2017

Evaluation of a general toxicity study incorporating phototoxicity assessments in Sprague-Dawley rats

Yutaka Yonezawa; Taishi Miyashita; Hiroko Ashizawa; Kazuto Hashimoto; Hiroaki Nejishima; Haruko Ogawa

Previously, we showed that phototoxicity assessments in Sprague-Dawley (SD) rats can detect phototoxic potential to the same degree as those in guinea pigs. In this study, we examined whether phototoxicity assessments can be incorporated into general toxicology studies, using SD rats. Three phototoxic compounds were tested. Acridine and 8-methoxypsoralen (8-MOP) were transdermally administered, and 8-MOP and lomefloxacin were orally administered. The animals were allocated to three groups for each compound: single-dose, repeated-dose, and repeated-dose plus toxicokinetics (TK). The single-dose group was irradiated with UV-A and UV-B after a single administration of the drug. The repeated-dose and TK groups were irradiated after 8 days of repeated administration of the drug. Blood samples were also collected from the TK group on days 1 and 7 after administration. The phototoxic compounds resulted in skin reactions in all the groups, with no difference in the degree of skin reaction among the three groups. In the TK measurements, all of the phototoxic compounds were detected in the plasma samples, and the irradiation timing was close to the Tmax. These results indicate that phototoxic potential could be evaluated in the TK group, and phototoxicity assessments could be incorporated into general toxicology studies. This reduces the number of studies and animals required, thus shortening the research and development period, and supporting the 3Rs principle of animal experiments. The study also provides information regarding appropriate irradiation timings, differences between the sexes, and dose-response, in turn enabling the phototoxic risk of the compounds to be clearly evaluated.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016

Evaluation of the PIGRET assay in rats by single oral dosing with azidothymidine.

Hisakazu Sanada; Tomoka Ohsumi; Naomi Koyama; Taishi Miyashita; Kazuto Hashimoto

In vivo phosphatidylinositol glycan, class A (Pig-a) gene mutation assay using peripheral blood is known to be a novel and useful tool to evaluate the mutagenicity of compounds. Recently, the rat PIGRET assay which is an improved method for measuring Pig-a mutant cells in reticulocytes with magnetic enrichment of CD71 positive cells has been developed. Several reports showed that the PIGRET assay could detect the increase of Pig-a mutant frequency earlier than the Pig-a assay in total red blood cells (RBC Pig-a assay). Therefore, as part of a collaborative study by the Mammalian Mutagenicity Study (MMS) Group of the Japanese Environmental Mutagen Society, the usefulness of the PIGRET assay in comparison to the RBC Pig-a assay has been assessed for 24 compounds with various mechanisms of action. In the present study, we performed the PIGRET assay and RBC Pig-a assay with a nucleoside analogue, azidothymidine (AZT), and compared the results in these assays. We administered a single dose of AZT to rats by oral gavage up to 2000mg/kg and examined Pig-a mutant frequencies at days 7, 14 and 28 by PIGRET and RBC Pig-a assays. No significant increases in mutant frequency were observed after administration of AZT in both the RBC Pig-a and PIGRET assays and comparable to the previous results of the International Workshop on Genotoxicity Testing (IWGT) workgroup. AZT has been thought to induce not only DNA chain termination as a pharmacological effect but also a large deletion on the genome DNA. The Pig-a assays may be less sensitive to compounds such as AZT which induce large deletions on the genome DNA.


Journal of Veterinary Medical Science | 2018

Anti-inflammatory effects of olive-derived hydroxytyrosol on lipopolysaccharide-induced inflammation in RAW264.7 cells

Yutaka Yonezawa; Taishi Miyashita; Hiroaki Nejishima; Yohei Takeda; Kunitoshi Imai; Haruko Ogawa

The control of inflammation, which arises from complex biological responses to harmful stimuli, is an important determinant of both clinical outcomes and patient comfort. However, the side effects of many current therapies such as non-steroidal anti-inflammatory drugs mean that new safe treatments are required. We previously reported that 12.5 µg/ml hydroxytyrosol (HT) suppressed gene expression of the inducible nitric oxide (NO) synthase (iNOS) isoform and NO production, in mouse peritoneal macrophages treated with lipopolysaccharide (LPS), where nuclear factor-κB (NF-κB) gene expression was not altered. The present study evaluated the anti-inflammatory effects of various concentrations of HT in LPS-induced RAW264.7 mouse macrophages. HT suppressed NF-κB signaling and downregulated LPS-mediated expression of iNOS, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1β at 12.5 µg/ml, resulting in reduced production of NO and prostaglandin E2. At lower concentrations, HT seemed to act via another signaling pathway to regulate the inflammatory response. In contrast, HT did not suppress LPS-induced expression of phosphorylated p44/42 mitogen-activated protein kinase. This study showed that HT had anti-inflammatory effects on LPS-stimulated RAW264.7 cells. HT is already available as a nutritional supplement and no toxic effects have been reported. Hence, HT represents a potential novel anti-inflammatory agent.


Journal of Toxicological Sciences | 2012

Hepatoprotective effect of tamoxifen on steatosis and non-alcoholic steatohepatitis in mouse models.

Taishi Miyashita; Yasuyuki Toyoda; Koichi Tsuneyama; Tatsuki Fukami; Miki Nakajima; Tsuyoshi Yokoi


한국분석과학회 학술대회 | 2014

Toxicological evaluation of the acyl glucuronide of nonsteroidal anti-inflammatory drugs

Tsuyoshi Yokoi; Taishi Miyashita; Toshihisa Koga; Miki Nakajima

Collaboration


Dive into the Taishi Miyashita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge