Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taisuke Hasegawa is active.

Publication


Featured researches published by Taisuke Hasegawa.


Journal of Physical Chemistry Letters | 2013

Water Bending Mode at the Water–Vapor Interface Probed by Sum-Frequency Generation Spectroscopy: A Combined Molecular Dynamics Simulation and Experimental Study

Yuki Nagata; Cho-Shuen Hsieh; Taisuke Hasegawa; Judith Voll; Ellen H. G. Backus; Mischa Bonn

We present a combined molecular dynamics simulation and experimental study on the water bending mode at the water-vapor interface using sum-frequency generation (SFG) spectroscopy. The SFG spectrum simulated using an ab initio-based water model shows good agreement with the experimental data. The imaginary part of the SFG response shows a negative peak at ∼1650 cm(-1) and a positive peak at ∼1730 cm(-1). Our results reveal that these widely (∼80 cm(-1)) separated peaks result from the interference of two closely spaced (∼29 cm(-1)) peaks of opposite sign. The positive peak at ∼1689 cm(-1) originates from water with two donor hydrogen atoms with the HOH angular bisector pointing down toward the bulk, and the negative peak at ∼1660 cm(-1) from water with free O-H groups, pointing up. The small frequency difference of 29 cm(-1) indicates that the HOH bending mode frequency of interfacial water is relatively insensitive to the number of hydrogen bonds.


Journal of Physical Chemistry B | 2011

A Polarizable Water Model for Intramolecular and Intermolecular Vibrational Spectroscopies

Taisuke Hasegawa; Yoshitaka Tanimura

We have developed a polarizable water model for classical molecular dynamics simulations of vibrational spectroscopies, which covers from low-frequency intermolecular modes to high-frequency intramolecular vibrational modes. The model utilizes the ab initio derived geometry-dependent multipole moment surfaces to depict the instantaneous charge density of a water molecule. Multipoles up to quadrupole are included for the permanent multipoles, while those up to dipole are included for the induced multipoles. The polarization of molecules is described by a distributed polarizability model. At room temperature, the present model is able to reproduce experimental infrared and Raman spectra of intramolecular vibrational modes, except for the blue peak shift due to a limitation of the classical simulation based on a quantum mechanical potential. The calculated infrared spectrum for low-frequency intermolecular modes agreed reasonably well with the experimental signals.


Journal of Chemical Physics | 2008

Nonequilibrium molecular dynamics simulations with a backward-forward trajectories sampling for multidimensional infrared spectroscopy of molecular vibrational modes

Taisuke Hasegawa; Yoshitaka Tanimura

A full molecular dynamics (MD) simulation approach to calculate multidimensional third-order infrared (IR) signals of molecular vibrational modes is proposed. Third-order IR spectroscopy involves three-time intervals between three excitation and one probe pulses. The nonequilibrium MD (NEMD) simulation allows us to calculate molecular dipoles from nonequilibrium MD trajectories for different pulse configurations and sequences. While the conventional NEMD approach utilizes MD trajectories started from the initial equilibrium state, our approach does from the intermediate state of the third-order optical process, which leads to the doorway-window decomposition of nonlinear response functions. The decomposition is made before the second pump excitation for a two-dimensional case of IR photon echo measurement, while it is made after the second pump excitation for a three-dimensional case of three-pulse IR photon echo measurement. We show that the three-dimensional IR signals are efficiently calculated by using the MD trajectories backward and forward in time for the doorway and window functions, respectively. We examined the capability of the present approach by evaluating the signals of two- and three-dimensional IR vibrational spectroscopies for liquid hydrogen fluoride. The calculated signals might be explained by anharmonic Brownian model with the linear-linear and square-linear system-bath couplings which was used to discuss the inhomogeneous broadening and dephasing mechanism of vibrational motions. The predicted intermolecular librational spectra clearly reveal the unusually narrow inhomogeneous linewidth due to the one-dimensional character of HF molecule and the strong hydrogen bond network.


Journal of Chemical Physics | 2006

Calculating fifth-order Raman signals for various molecular liquids by equilibrium and nonequilibrium hybrid molecular dynamics simulation algorithms

Taisuke Hasegawa; Yoshitaka Tanimura

The fifth-order two-dimensional (2D) Raman signals have been calculated from the equilibrium and nonequilibrium (finite field) molecular dynamics simulations. The equilibrium method evaluates response functions with equilibrium trajectories, while the nonequilibrium method calculates a molecular polarizability from nonequilibrium trajectories for different pulse configurations and sequences. In this paper, we introduce an efficient algorithm which hybridizes the existing two methods to avoid the time-consuming calculations of the stability matrices which are inherent in the equilibrium method. Using nonequilibrium trajectories for a single laser excitation, we are able to dramatically simplify the sampling process. With this approach, the 2D Raman signals for liquid xenon, carbon disulfide, water, acetonitrile, and formamide are calculated and discussed. Intensities of 2D Raman signals are also estimated and the peak strength of formamide is found to be only five times smaller than that of carbon disulfide.


Journal of Chemical Physics | 2008

Two-dimensional fifth-order Raman spectroscopy of liquid formamide: Experiment and Theory

Yun-Liang Li; L. Huang; R. J. Dwayne Miller; Taisuke Hasegawa; Yoshitaka Tanimura

The fifth-order two-dimensional (2D) Raman spectrum of liquid formamide has been obtained. The absolute signal levels, qualitative features, as well as quantitative aspects of the 2D spectrum are found to be in good agreement with recent molecular dynamics calculations. The most important singular feature is the relatively strong rephasing signal observed along the diagonal. This finding illustrates the more structured nature of the hydrogen bond network of liquid formamide in comparison with simple liquids as exemplified by CS(2). The theoretical calculations have been extended to include comparisons of different potentials that illustrate the sensitivity of the experiment to the anharmonic motions in the liquid state. The theoretical results point out the key features in the 2D spectrum that probe the essential details in the intermolecular potential. The experiment has been demonstrated to provide new insight into collective effects operating in hydrogen bonded liquids and opens up the exploration of other liquids with this approach.


Journal of Chemical Physics | 2015

Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.

Tatsuhiko Ohto; Kota Usui; Taisuke Hasegawa; Mischa Bonn; Yuki Nagata

Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).


Journal of Chemical Physics | 2006

Analyzing atomic liquids and solids by means of two-dimensional Raman spectra in frequency domain

Yuki Nagata; Taisuke Hasegawa; Yoshitaka Tanimura

A practical method to evaluate the contributions of the nonlinear polarizability and anharmonicity of potentials from the experimental and simulation data by using double Fourier transformation is presented. In a Lennard-Jones potential system, an approximated expression of the fifth-order response function using the ratio between nonlinear polarizability and anharmonicity exhibits a good agreement with the results of the molecular dynamics simulation. In a soft-core case, the fifth-order Raman signal indicates that the system consists of the delocalized and localized modes, and only the delocalized mode affects the dramatic change of the fifth-order Raman response functions between solid and liquid phases through nonlinear polarizability.


Journal of Chemical Physics | 2014

Calculating two-dimensional THz-Raman-THz and Raman-THz-THz signals for various molecular liquids: The samplers

Hironobu Ito; Taisuke Hasegawa; Yoshitaka Tanimura

Recently, two-dimensional (2D) THz-Raman spectroscopy has been used to investigate the intermolecular modes of liquid water. We examine such 2D spectroscopy signals by means of full molecular dynamics (MD) simulations. In this way, we carry out a detailed analysis of intermolecular interactions that play an essential role in many important chemical processes. We calculate 2D Raman-THz-THz (RTT), THz-Raman-THz (TRT), and 2D Raman signals for liquid water, methanol, formamide, acetonitrile, formaldehyde, and dimethyl sulfoxide using an equilibrium-non-equilibrium hybrid MD simulation algorithm originally developed for 2D Raman spectroscopy. These signals are briefly analyzed in terms of anharmonicity and nonlinear polarizability of vibrational modes on the basis of the 2D Raman signals calculated from a Brownian oscillator model with a nonlinear system-bath interaction. We find that the anharmonic contribution is dominant in the RTT case, while the nonlinear polarizability contribution is dominant in the TRT case. For water and methanol, we observed vibrational echo peaks of librational motion in the 2D TRT signals. The predicted signal profiles and intensities that we obtained provide valuable information that can be applied to 2D spectroscopy experiments, allowing them to be carried out more efficiently.


Science Advances | 2017

A polyaromatic nanocapsule as a sucrose receptor in water

Masahiro Yamashina; Munetaka Akita; Taisuke Hasegawa; Shigehiko Hayashi; Michito Yoshizawa

A supramolecular capsule with a polyaromatic shell binds d-sucrose from natural saccharide mixtures with perfect selectivity. Selective recognition of saccharides by artificial receptors in water is a challenging goal due to their strong hydrophilicities and complex molecular structures with subtle regio- and stereochemical differences. We report the selective and efficient encapsulation of d-sucrose within a coordination-driven molecular capsule from natural saccharide mixtures in water (~100% selectivity, >85% yield, and ~103 M−1 binding constant). Unlike previous artificial receptors and natural receptors that rely on multiple hydrogen-bonding interactions, theoretical calculations and control experiments indicate that the observed unique selectivity arises from multiple CH-π interactions between the sucrose hydrocarbon backbone and the shape-complementary polyaromatic cavity (~1 nm in diameter) of the capsule.


Journal of Biological Chemistry | 2016

X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

Takashi Tsukamoto; Kenji Mizutani; Taisuke Hasegawa; Megumi Takahashi; Naoya Honda; N. Hashimoto; Kazumi Shimono; Keitaro Yamashita; Masaki Yamamoto; Seiji Miyauchi; Shin Takagi; Shigehiko Hayashi; Takeshi Murata; Yuki Sudo

Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a “thermal sensor.” These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance.

Collaboration


Dive into the Taisuke Hasegawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge