Taisuke Tomonaga
University of Occupational and Environmental Health Japan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Taisuke Tomonaga.
Nanotoxicology | 2016
Yasuo Morimoto; Hiroto Izumi; Yukiko Yoshiura; Taisuke Tomonaga; Byeong-Woo Lee; Takami Okada; Takako Oyabu; Toshihiko Myojo; Kazuaki Kawai; Kazuhiro Yatera; Manabu Shimada; Masaru Kubo; Kazuhiro Yamamoto; Shinichi Kitajima; Etsushi Kuroda; Masanori Horie; Kenji Kawaguchi; Takeshi Sasaki
Abstract In order to examine whether intratracheal instillation studies can be useful for determining the harmful effect of nanoparticles, we performed inhalation and intratracheal instillation studies using samples of the same nanoparticles. Nickel oxide nanoparticles (NiO) and titanium dioxide nanoparticles (TiO2) were used as chemicals with high and low toxicities, respectively. In the intratracheal instillation study, rats were exposed to 0.2 or 1 mg of NiO or TiO2. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the single intratracheal instillation. In the inhalation study, rats were exposed to inhaled NiO or TiO2 (1.65, 1.84 mg/m3, respectively) for 4 weeks. The same endpoints were examined from 3 days to 3 months after the end of exposure. Inhalation of NiO induced an increase in the number of neutrophils in BALF and concentrations of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and heme oxygenase (HO)-1. Intratracheal instillation of NiO induced persistent inflammation and upregulation of these cytokines was observed in the rats. However, inhalation of TiO2 did not induce pulmonary inflammation, and intratracheal instillation of TiO2 transiently induced an increase in the number of neutrophils in BALF and the concentrations of CINC-1, CINC-2 and HO-1. Taken together, a difference in pulmonary inflammation was observed between the high and low toxicity nanomaterials in the intratracheal instillation studies, as in the inhalation studies, suggesting that intratracheal instillation studies may be useful for ranking the harmful effects of nanoparticles.
International Journal of Molecular Sciences | 2016
Yasuo Morimoto; Hiroto Izumi; Yukiko Yoshiura; Taisuke Tomonaga; Takako Oyabu; Toshihiko Myojo; Kazuaki Kawai; Kazuhiro Yatera; Manabu Shimada; Masaru Kubo; Kazuhiro Yamamoto; Shinichi Kitajima; Etsushi Kuroda; Kenji Kawaguchi; Takeshi Sasaki
We conducted inhalation and intratracheal instillation studies of zinc oxide (ZnO) nanoparticles in order to examine their pulmonary toxicity. F344 rats were received intratracheal instillation at 0.2 or 1 mg of ZnO nanoparticles with a primary diameter of 35 nm that were well-dispersed in distilled water. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed at three days, one week, one month, three months, and six months after the instillation. As the inhalation study, rats were exposed to a concentration of inhaled ZnO nanoparticles (2 and 10 mg/m3) for four weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were analyzed at three days, one month, and three months after the end of the exposure. In the intratracheal instillation study, both the 0.2 and the 1.0 mg ZnO groups had a transient increase in the total cell and neutrophil count in the BALF and in the expression of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in the BALF. In the inhalation study, transient increases in total cell and neutrophil count, CINC-1,-2 and HO-1 in the BALF were observed in the high concentration groups. Neither of the studies of ZnO nanoparticles showed persistent inflammation in the rat lung, suggesting that well-dispersed ZnO nanoparticles have low toxicity.
Antioxidants | 2016
Masanori Horie; Yukiko Yoshiura; Hiroto Izumi; Takako Oyabu; Taisuke Tomonaga; Takami Okada; Byeong-Woo Lee; Toshihiko Myojo; Masaru Kubo; Manabu Shimada; Yasuo Morimoto
NiO nanoparticles were administered to rat lungs via intratracheal instillation or inhalation. During pulmonary toxicity caused by NiO nanoparticles, the induction of oxidative stress is a major factor. Both intratracheal instillation and inhalation of NiO nanoparticles induced pulmonary oxidative stress. The oxidative stress response protein, heme oxygenase-1 (HO-1), was induced by the administration of NiO nanoparticles at both the protein and gene expression level. Additionally, certain oxidative-stress markers in the lung, such as 8-iso-prostaglandin F2α, thioredoxin, and inducible nitric oxide synthase were increased. Furthermore, the concentration of myeloperoxidase (MPO) in the lung was also increased by the administration of NiO nanoparticles. When the amount of NiO in the lung is similar, the responses against pulmonary oxidative stress of intratracheal instillation and inhalation are also similar. However, the state of pulmonary oxidative stress in the early phase was different between intratracheal instillation and inhalation, even if the amount of NiO in the lung was similar. Inhalation causes milder oxidative stress than that caused by intratracheal instillation. On evaluation of the nanoparticle-induced pulmonary oxidative stress in the early phase, we should understand the different states of oxidative stress induced by intratracheal instillation and inhalation.
BioMed Research International | 2017
Taisuke Tomonaga; Hiroto Izumi; Yukiko Yoshiura; Toshihiko Myojo; Takako Oyabu; Byeong-Woo Lee; Takami Okada; Yun-Shan Li; Kazuaki Kawai; Toshiaki Higashi; Yasuo Morimoto
We investigated the harmful effects of exposure to a toner with external additives by a long-term inhalation study using rats, examining pulmonary inflammation, oxidative stress, and histopathological changes in the lung. Wistar rats were exposed to a well-dispersed toner (mean of MMAD: 2.1 μm) at three mass concentrations of 1, 4, and 16 mg/m3 for 22.5 months, and the rats were sacrificed after 6 months, 12 months, and 22.5 months of exposure. The low and medium concentrations did not induce statistically significant pulmonary inflammation, but the high concentration did, and, in addition, a histopathological examination showed fibrosis in the lung. Although lung tumor was observed in one sample of high exposure for 22.5 months, the cause was not statistically significant. On the other hand, a persistent increase in 8-OHdG was observed in the high exposure group, indicating that DNA damage by oxidative stress with persistent inflammation leads to the formation of tumorigenesis. The results of our studies show that toners with external additives lead to pulmonary inflammation, oxidative stress, and fibrosis only at lung burdens beyond overload. These data suggest that toners with external additives may have low toxicity in the lung.
International Journal of Molecular Sciences | 2017
Takako Oyabu; Toshihiko Myojo; Byeong-Woo Lee; Takami Okada; Hiroto Izumi; Yukiko Yoshiura; Taisuke Tomonaga; Yun-Shan Li; Kazuaki Kawai; Manabu Shimada; Masaru Kubo; Kazuhiro Yamamoto; Kenji Kawaguchi; Takeshi Sasaki; Yasuo Morimoto
The hazards of various types of nanoparticles with high functionality have not been fully assessed. We investigated the usefulness of biopersistence as a hazard indicator of nanoparticles by performing inhalation and intratracheal instillation studies and comparing the biopersistence of two nanoparticles with different toxicities: NiO and TiO2 nanoparticles with high and low toxicity among nanoparticles, respectively. In the 4-week inhalation studies, the average exposure concentrations were 0.32 and 1.65 mg/m3 for NiO, and 0.50 and 1.84 mg/m3 for TiO2. In the instillation studies, 0.2 and 1.0 mg of NiO nanoparticles and 0.2, 0.36, and 1.0 mg of TiO2 were dispersed in 0.4 mL water and instilled to rats. After the exposure, the lung burden in each of five rats was determined by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) from 3 days to 3 months for inhalation studies and to 6 months for instillation studies. In both the inhalation and instillation studies, NiO nanoparticles persisted for longer in the lung compared with TiO2 nanoparticles, and the calculated biological half times (BHTs) of the NiO nanoparticles was longer than that of the TiO2 nanoparticles. Biopersistence also correlated with histopathological changes, inflammatory response, and other biomarkers in bronchoalveolar lavage fluid (BALF) after the exposure to nanoparticles. These results suggested that the biopersistence is a good indicator of the hazards of nanoparticles.
Journal of Nanoparticle Research | 2015
Yukiko Yoshiura; Hiroto Izumi; Takako Oyabu; Masayoshi Hashiba; Tatsunori Kambara; Yohei Mizuguchi; Byeong Woo Lee; Takami Okada; Taisuke Tomonaga; Toshihiko Myojo; Kazuhiro Yamamoto; Shinichi Kitajima; Masanori Horie; Etsushi Kuroda; Yasuo Morimoto
Journal of Nanoparticle Research | 2015
Yasuo Morimoto; Hiroto Izumi; Yukiko Yoshiura; Taisuke Tomonaga; Takako Oyabu; Toshihiko Myojo; Kazuaki Kawai; Kazuhiro Yatera; Manabu Shimada; Masaru Kubo; Kazuhiro Yamamoto; Shinichi Kitajima; Etsushi Kuroda; Kenji Kawaguchi; Takeshi Sasaki
European Respiratory Journal | 2014
Hiroto Izumi; Yasuo Morimoto; Masanori Horie; Yukiko Yoshiura; Taisuke Tomonaga; Byeong-Woo Lee; Takami Okada; Takako Oyabu; Toshihiko Myojo; Manabu Shimada; Masaru Kubo; Kazuhiro Yamamoto; Shinichi Kitajima
Environmental Health and Preventive Medicine | 2016
Takako Oyabu; Yasuo Morimoto; Hiroto Izumi; Yukiko Yoshiura; Taisuke Tomonaga; Byeong-Woo Lee; Takami Okada; Toshihiko Myojo; Manabu Shimada; Masaru Kubo; Kazuhiro Yamamoto; Kenji Kawaguchi; Takeshi Sasaki
European Respiratory Journal | 2015
Yasuo Morimoto; Hiroto Izumi; Yukiko Yoshiura; Taisuke Tomonaga; Takako Oyabu; Toshihiko Myojo; Manabu Shimada; Masaru Kubo; Kazuhiro Yamamoto; Shinichi Kitajima
Collaboration
Dive into the Taisuke Tomonaga's collaboration.
University of Occupational and Environmental Health Japan
View shared research outputsUniversity of Occupational and Environmental Health Japan
View shared research outputsUniversity of Occupational and Environmental Health Japan
View shared research outputsUniversity of Occupational and Environmental Health Japan
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputs