Taito Nishino
Chiba University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Taito Nishino.
Experimental Hematology | 2009
Taito Nishino; Katsuaki Miyaji; Norihisa Ishiwata; Kazutaka Arai; Makiko Yui; Yasuyuki Asai; Hiromitsu Nakauchi; Atsushi Iwama
OBJECTIVE The signaling by thrombopoietin (TPO) via its receptor, c-MPL, plays a crucial role in the maintenance of hematopoietic stem cells (HSCs). Small-molecule c-MPL agonists have recently been shown to be beneficial in the treatment of thrombocytopenia. However, their effects on HSCs have not yet been explored. In this study, we evaluated the effects of NR-101, a novel small-molecule c-MPL agonist, on the ex vivo expansion of human cord blood (hCB) HSCs. MATERIALS AND METHODS hCB CD34(+) or CD34(+)CD38(-) hematopoietic stem and progenitor cells were cultured for 7 days in the presence of thrombopoietin (TPO) or NR-101, and then subjected to flow cytometric analyses, colony-forming cell assays, and severe combined immunodeficiency-repopulating cell assays. RESULTS During a 7-day culture of CD34(+) or CD34(+)CD38(-) hematopoietic stem and progenitor cells, NR-101 efficiently increased their numbers, with a greater than twofold increase compared to TPO, although its effect on megakaryocytopoiesis was comparable to that of TPO. Correspondingly, severe combined immunodeficiency-repopulating cells were increased 2.9-fold during a 7-day culture with NR-101 compared to freshly isolated CD34(+) cells, and 2.3-fold compared to that with TPO. Of note, NR-101 persistently activated signal transducer and activator of transcription (STAT) 5 but not signal transducer and activator of transcription 3. Furthermore, NR-101 induced a long-term accumulation of hypoxia-inducible factor-1alpha protein and enhanced activation of its downstream target genes. CONCLUSION This is the first time that a small-molecule c-MPL agonist has been demonstrated to promote net expansion of HSCs. NR-101 is more efficient in ex vivo expansion of HSCs than TPO. NR-101 could be a useful tool for the therapeutic manipulation of human HSCs.
PLOS ONE | 2011
Taito Nishino; Changshan Wang; Makiko Mochizuki-Kashio; Mitsujiro Osawa; Hiromitsu Nakauchi; Atsushi Iwama
Background Human cord blood (hCB) is the main source of hematopoietic stem and progenitor cells (HSCs/PCs) for transplantation. Efforts to overcome relative shortages of HSCs/PCs have led to technologies to expand HSCs/PCs ex vivo. However, methods suitable for clinical practice have yet to be fully established. Methodology/Principal Findings In this study, we screened biologically active natural products for activity to promote expansion of hCB HSCs/PCs ex vivo, and identified Garcinol, a plant-derived histone acetyltransferase (HAT) inhibitor, as a novel stimulator of hCB HSC/PC expansion. During a 7-day culture of CD34+CD38– HSCs supplemented with stem cell factor and thrombopoietin, Garcinol increased numbers of CD34+CD38– HSCs/PCs more than 4.5-fold and Isogarcinol, a derivative of Garcinol, 7.4-fold. Furthermore, during a 7-day culture of CD34+ HSCs/PCs, Garcinol expanded the number of SCID-repopulating cells (SRCs) 2.5-fold. We also demonstrated that the capacity of Garcinol and its derivatives to expand HSCs/PCs was closely correlated with their inhibitory effect on HAT. The Garcinol derivatives which expanded HSCs/PCs inhibited the HAT activity and acetylation of histones, while inactive derivatives did not. Conclusions/Significance Our findings identify Garcinol as the first natural product acting on HSCs/PCs and suggest the inhibition of HAT to be an alternative approach for manipulating HSCs/PCs.
Expert Opinion on Biological Therapy | 2012
Taito Nishino; Mitsujiro Osawa; Atsushi Iwama
Introduction: Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and to differentiate into all blood cell lineages, and are currently the foundation of HSC transplantation therapy. A variety of methods have recently been explored to find a way to expand hematopoietic stem and progenitor cells (HSCs/PCs) ex vivo in order to improve the efficiency and outcome of HSC transplantation. Areas covered: Recent studies of HSCs/PCs have led to the development of new ways to detect and purify HSCs/PCs and have also revealed several intrinsic and extrinsic factors that control the molecular signals fundamental to self-renewal and differentiation of HSCs. These findings have provided new approaches for expanding HSCs/PCs ex vivo utilizing protein factors and small-molecule compounds (SMCs) and have also demonstrated promising outcomes in clinical trials. Expert opinion: Although further technical innovation is still needed, elucidation of the whole picture of signaling pathways critical to HSCs/PCs and manipulation of such pathways by SMCs could establish efficient, cost-effective, riskless and robust methods for ex vivo expansion of HSCs/PCs. With these efforts, more sophisticated HSC transplantation would be possible in the near future.
Blood Advances | 2017
Ayako Aihara; Tomo Koike; Natsuki Abe; Sou Nakamura; Akira Sawaguchi; Takanori Nakamura; Naoshi Sugimoto; Hiromitsu Nakauchi; Taito Nishino; Koji Eto
Signaling by thrombopoietin (TPO) in complex with its receptor, c-MPL, is critical for hematopoietic stem cell (HSC) homeostasis and platelet generation. Here we show that TA-316, a novel chemically synthesized c-MPL agonist (CMA), is useful for ex vivo platelet generation from human-induced pluripotent stem (iPS) cell-derived immortalized megakaryocyte progenitor cell lines (imMKCLs). Moreover, the generation is clinically applicable, because self-renewal expansion and platelet release is tightly controllable. TA-316 but not eltrombopag, another CMA, promoted both the self-renewal and maturation of imMKCLs, leading to more than a twofold higher platelet production than that achieved with recombinant human TPO (rhTPO). Interestingly, TA-316 seemed to favor MK-biased differentiation from bone marrow CD34+ HSC/progenitors and imMKCLs through the upregulation of vascular endothelial growth factor A and fibroblast growth factor 2. This result suggests TA-316 could facilitate the development of an efficient and useful system to expand platelets from imMKCLs.
Cancer Science | 2016
Ayako Aihara; Natsuki Abe; Koichiro Saruhashi; Tatsuro Kanaki; Taito Nishino
Anticancer drug discovery efforts have used 2‐D cell‐based assay models, which fail to forecast in vivo efficacy and result in a lower success rate of clinical approval. Recent 3‐D cell culture models are expected to bridge the gap between 2‐D and in vivo models. However, 3‐D cell culture methods that are available for practical anticancer drug screening have not yet been fully attained. In this study, we screened several polymers for their ability to suspend cells or cell spheroids homogeneously in a liquid medium without changing the viscosity behavior, and identified gellan gum (FP001), as the most potent polymer. FP001 promoted cell dispersion in the medium and improved the proliferation of a wide range of cancer cell lines under low attachment conditions by inhibiting the formation of large‐sized spheroids. In addition, cancer cells cultured with FP001‐containing medium were more susceptible to inhibitors of epidermal growth factor (EGF) signaling than those cultured under attachment conditions. We also showed that ligands of the EGF receptor family clearly enhance proliferation of SKOV3 ovarian carcinoma cells under anchorage‐independent conditions with FP001. Consistent with this result, the cells grown with FP001 showed higher EGF receptor content compared with cells cultured under attachment conditions. In conclusion, we developed a novel 3‐D cell culture system that is available for high throughput screening of anticancer agents, and is suitable for evaluation of molecular‐targeted anticancer drugs. Three‐dimensional cell culture using FP001 will be of value in the development of useful technologies for anticancer drug discovery.
Scientific Reports | 2018
Natsuki Abe-Fukasawa; Keiichiro Otsuka; Ayako Aihara; Nobue Itasaki; Taito Nishino
Cells grown in three-dimensional (3D) cultures are more likely to have native cell-cell and cell-matrix interactions than in 2D cultures that impose mechanical constraints to cells. However, most 3D cultures utilise gel matrix which, while serving as a scaffold, limits application due to its solid and opaque nature and inconsistency in cell exposure to exogenous signals. In 3D culture without gel matrix, cells tend to adhere to each other and form clumps with necrotic zone at the centre, making them unsuitable for analyses. Here we report that addition of low-molecular-weight agar named LA717 to culture media allows cells to grow as dispersed clonal spheroids in 3D. LA717 maintains cells dispersed and settled to the bottom of the medium while keeping the medium clear with little additional viscosity, making it suitable for microscopic observation. Importantly, cancer spheroids formed in LA717-containing medium show higher sensitivity to anti-cancer drugs such as Trametinib and MK-2206 that are not as effective in 2D. Because of the small and consistent size of spheroids, cell viability and drug toxicity are readily detectable in automated imaging analysis. These results demonstrate that LA717 offers a novel 3D culture system with great in vivo reflection and practicality.
Archive | 2011
Taito Nishino; Atsushi Iwama
Archive | 2008
Takanori Nakamura; Atsushi Miyamura; Taito Nishino; Norihisa Ishiwata; Katsuaki Miyaji
Archive | 2008
Taito Nishino; Norihisa Ishiwata; Katsuaki Miyaji; Shunsuke Iwamoto; Yasuyuki Asai; Makiko Yui
Archive | 2003
Katsuaki Miyaji; Norihisa Ishiwata; Takanori Nakamura; Taito Nishino; Hisao Kamiya; Masao Yamamoto